Antimicrobial strategies for controlling CLas and the Asian citrus psyllid

Kirsten Pelz-Stelinski
Associate Professor
Citrus Research and Education Center
Citrus greening disease or Huanglongbing
Current psyllid management requires significant input of insecticides

- Use of broad-spectrum insecticides targeting adult psyllids with possible rotation with insect growth regulators

- Applications made prior to new flush are most effective in reducing psyllid populations

 • 10-12+ annual sprays annually
Antimicrobials for reducing pathogen transmission

Current management of psyllids with broad spectrum insecticides is unsustainable

• High cost
• Physiological resistance
Challenge: Targeted manipulation of symbionts provides a unique opportunity for vector/pathogen management

- **Symbiont elimination/suppression**
 - Antibiotics
 - Bactericides: oligonucleotide suppression of Las and endosymbionts

![Insecticide susceptibility—2017](image-url)
Antimicrobials for reducing pathogen transmission

Current management of psyllids with broad spectrum insecticides is unsustainable

- High cost
- Physiological resistance

Can we manipulate microorganisms present in the vector and host plant to reduce pathogen transmission?

- Disruption of symbionts for ACP/CLas management
ACP bacterial endosymbionts

- *Candidatus* Carsonella ruddii
- *Candidatus* Profftella armature
- *Wolbachia* (wDi)
- *Candidatus* Liberibacter asiaticus
- *Wolbachia* (wDi)
ACP bacterial endosymbionts

- *Candidatus Liberibacter asiaticus*
- *Wolbachia (wDi)*
ACP bacterial endosymbionts
ACP bacterial endosymbionts

Nakabachi et al. 2013

Ammar et al. 2011

ACP bacterial endosymbionts
Antimicrobials for reducing ACP survival and Las transmission

Antibiotic treatments:
• Plants (Las)
• ACP (Las, endosymbionts)

Antisense RNA technologies:
• Reduce Las in plants
• Selectively eliminate Las symbionts
Management of Huanglongbing: EPA crisis declaration

Florida citrus lost an estimated $7.80 billion between 2006-2014.

Three commercially available bactericides for Florida citrus:

- **FireWall™ 50 WP**: Streptomycin sulfate
- **FireLine™ 17 WP**: Oxytetracycline hydrochloride
- **Mycoshield®**: Oxytetracycline calcium complex base
Greenhouse Plant Assay: Firewall Vs. Fireline Foliar Spray Efficacy

*FireWall and Fireline applied at label rate (200 PPM)
Greenhouse Plant Assay: Firewall Vs. Fireline Foliar Spray Efficacy

Positive values indicate reductions in CLas titer compared to day 0.
Greenhouse Plant Assay: Firewall Vs. Fireline Foliar Spray Efficacy

- Positive values indicate reductions in CLas titer compared to day 0 in response to Firewall (streptomycin).
- Reduction in CLas after 4 weeks with Fireline (oxytetracycline).
Positive values indicate reductions in CLas titer compared to day 0 in response to Firewall (streptomycin)
Streptomycin in leaf samples

- Plants treated by soil drench
- Leaves sampled day 6
- Concentrations determined from standard curve in ELISA assay

**** = $P \leq 0.0001$
Do antibiotics reduce ACP feeding?

10 adults (mixed age) released onto a artificial diet ring

After 3 days, adults removed filter paper kept under the lid

Petri plate inverted to collect honeydew droplets on filter paper

Filter paper dipped in ninhydrin (1%) for 3 min and dried
Oxytetracycline inhibits ACP feeding

ANOVA: $P = 0.005$, $F = 9.75$, $df = 3, 11$
ACP survival in response to bactericides

Mantel-Cox: $P < 0.0001$, $F = 5.468$, df = 4,

- Control
- 5mg/ml Streptomycin
- 5mg/ml Alternating
- 5mg/ml Oxytetracycline
- 1mg/ml Imidacloprid

Percent Survival vs. Days
ACP survival in response to bactericides

Mantel-Cox: $P = <0.0001$, $F = 5.468$, df = 4,

No effect of streptomycin at observed dose

Mantel-Cox: $P = <0.0001$, $F = 5.468$, df = 4,
ACP survival in response to bactericides

Oxytetracycline reduces ACP survival

Mantel-Cox: $P = <0.0001$, $F = 5.468$, df = 4,
Antimicrobials for reducing pathogen transmission

Current management of psyllids with broad spectrum insecticides is unsustainable

- High cost
- Physiological resistance

Can we manipulate microorganisms present in the vector and host plant to reduce pathogen transmission?

- Disruption of symbionts for ACP/CLas management
Silencing of bacterial essential genes using FANA/PPMO
• Knock out endosymbiont to reduce transmission/vector fitness

• Development of FANA and morpholino (PPMO)-EGS technology targeting CLas and bacterial symbionts in ACP

• Synthetic molecules that mimic DNA and inhibit bacterial gene expression.

• These engineered molecules can be delivered specifically to target bacteria based on gene sequence, avoiding the problems of effecting non-target bacteria.
RNA-based bactericidal agents: selectively bind to bacterial mRNA

FANA antisense oligonucleotides (FANA)

- High stability
- Stable hybridization with the target mRNA

Peptide conjugated morpholino (PPMO)

- Endonuclease resistant
- Proven track record of limiting bacterial populations

Image Kole et al. 2012
RNA-based bactericidal agents: selectively bind to bacterial mRNA

- FANA antisense oligonucleotides (FANA)
- Peptide conjugated morpholino (PPMO)

- High stability
- Stable hybridization with the target mRNA
- Endonuclease resistant
- Proven track record of limiting bacterial populations

Post-transcriptional gene silencing technologies that involve the binding of complementary oligonucleotides to target RNA through base paring

Image Kole et al. 2012
Penetration of FANA and PPMO in insect cells

Red indicates penetration of oligonucleotides inside cells

FANA fluorophore: Alexa647
PPMO fluorophore: Lissamine
Localization of FANA oligo in the alimentary canal of ACP adults
FANA and PPMOs reduce *Wolbachia* survival in cell culture

![Graph showing the effects of FANA and PPMOs on Wolbachia survival](image-url)
FANA applied to citrus through root injection reduces CLas

Negative values represent reduction of Las titer
Summary of antisense efficacy

<table>
<thead>
<tr>
<th></th>
<th>FANA</th>
<th>PPMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Las (Citrus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Las (ACP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolbachia (cell culture)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proftella endosymbiont</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>ACP Survival</td>
<td></td>
<td>TBD</td>
</tr>
<tr>
<td>Transmission</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Conclusions

• Some reduction of Las titers in response to FireWall and FireLine in greenhouse assays
• Antisense FANAs more effective than streptomycin at reducing Las
• Ingestion of antimicrobials reduces feeding (tetracycline) survival (tetracycline, FANA) of ACP
• Antimicrobial treatments (antibiotics or antisense-RNA technologies) can specifically target Las and microorganisms in ACP
Future Strategies

• Antimicrobials currently available appear to may be effective in reducing ACP populations and CLas transmission

• Targeted antimicrobials likely to be more effective in reducing CLas transmission by ACP
 – Reduces potential for non-target effects
 – Multiple target sites reduce potential for resistance
Thanks!

Andres Sandoval Mojica (UF)
Gustavo Rivas (UF)
Sylvia Bonilla (UF)
Torrence Gill (UF)
Austin McGowan (UF)
Andrew Monalo (UF)
Gennarino Del Bagno (UF)
Wayne Hunter (USDA)
Sidney Altman (Yale University)

Chia-Ching Chu (UF)
Al Handler (USDA)
Evan Braswell (USDA)
Mark Hoffman (NC State)
Calum Russell (UF)
Austin McGowan (UF)
Linhchi Nguyen (UF)
Alex Arp (USDA)