Solving Preharvest Fruit Drop by Understanding Abscission in HLB-Affected Citrus Trees: A Hormonal and Nutritional Approach

Fernando Alferez

alferez@ufl.edu

Citrus Expo Fort Myers, August 18, 2021

Fruit drop is a natural developmental process that may be influenced by other causes

FRUIT DROP

HLB is a major cause of increased preharvest fruit drop

Other possible causes?

All related to HLB

March

	Late season harvest Dec-Jan	HAMLIN
Previous year's crop	Next year's crop	

Fruit retention in healthy Hamlin and Valencia trees

High competence for resources

The situation under HLB

HLB-infected Hamlin

Diversity of developmental stages affects hormonal interactions within the tree.

The wrong signal at the wrong time

Interfering the message

Changing the message

Auxin levels and signaling, and stress alleviation, depend on Zn levels

Zn treatment in Hamlin on Swingle and US942

ZnSO4 (50 grams per tree, foliar spray)
 K2SO4 (60 grams per tree, foliar spray)
 ZN+K combined treatment

3 applications:
After fruit set and physiological drop (June)
Fruit enlargement phase (July)
Fruit color break (September)

Seasonal effects of Zn treatment on fruit drop in Hamlin

Treatment

YIELD (all treatment dates pooled)

	Hamlin on Swingle		Hamlin on US942	
	# fruit/4	Boxes/acre	# fruit/4	Boxes/acre
	trees		trees	
Control	952	231	811	197
Zn	1029	256	885	216

Maximizing the effect of our treatments

Conclusions

- We can improve fruit retention with feasible treatments than can be adopted now.
- These treatments may increase fruit yield and quality.
- Time of application is critical for treatment success. This must be defined for each variety and treatment and depends on the physiological status of the fruit.
- Planned work will allow to develop a management strategy to maximize effects of Zn and K treatments.

Special thanks to my Research Team at SWFREC

