Effects of nominal thresholds and flush on psyllid spray decisions

Lukasz Stelinski

University of Florida, Entomology and Nematology Department, CREC, Lake Alfred, FL

The Economic Injury Level (EIL)

- How do thresholds relate to psyllid damage?
- The role of flush
- Combining a threshold while considering the role of flush

The Economic Injury Level

Time

FIL

How EIL works

- Requires regular monitoring
- Known target population that causes economic damage
- Decide whether treatment is necessary after assessing pest populations
- Control measures applied when that known threshold is reached

Managing ACP using an Economic Injury Level—Mature Grove

Effectively timed dormant season sprays are critical to establish a sufficiently low ACP population at season's onset in order to implement EIL

Starting out with low ACP population with effective dormant spray is essential for implementing an EIL

Typical recent model for ACP sprays:

- After harvest, a dormant spray has been usually timed before major spring flush using pyrethroid or organophosphate.
- Sprays made on a schedule with intervals determined by length of efficacy of a particular insecticide.

Possible better alternative:

- Spray for adults at bud break at the beginning of each new flush before there is feather flush on which adults can lay eggs.
- Apply second spray on the flush as ACP begin to reappear. This seems to achieve more than 60 days of low ACP populations.
- Hold off spraying until ACP reach threshold (0.2—1 per tap).

Hypothetical example of implementing an Economic Injury Level at 0.2 ACP/ tap

achieve 60+ days of low ACP populations

Integrating tree phenology with EIL

- Timing insecticide applications with bud break resulted in better ACP suppression.
- Maintaining ACP populations below a threshold of 1 ACP / tap was associated with better yield.

-Solid lines indicate calendar sprays (higher ACP)

-Dashed lines indicate use of bud break model to predict flushes (lower ACP)

Increasing threshold above 0.2 psyllids/tap in 5 yr old citrus did not return profit

	Threshold		
App Date	0.2 ACP / tap	0.5 ACP / tap	1.0 ACP / tap
May 5, 2020	fenpropathrin (Danitol 2.4EC)		
Jun 9 10, 2020	dimethoate (Dimethoate 4E)	fenpropathrin	
Jul 7-10, 2020	cyantraniliprole (Exirel)	dimethoate	fenpropathrin
Aug 12, 2020	diflubenuron (Micromite 80WGS)	cyantraniliprole	
Sep 24, 2020	thiamethoxam (Actara WG)	diflubenzuron	dimethoate
Oct 28, 2020	spinetoram (Delegate WG)		
Dec 18, 2020	abamectin	thiamethoxam	

Trend of higher yield with lower threshold; profit loss in 5 yr old trees due to damage by going above 0.2 / tap threshold

More than one way to reduce costs

Border treatments

• Targeting flush

Border vs whole grove sprays in blocks previously sprayed

Border sprays can reduce ACP densities for about 4 weeks,M. Setamoubut when new flush appears, whole grove applications are more effective

Importance of Flush shoots:

 Flush cycles are the main driver of ACP population fluctuations: adult recruitment & reproduction

- Higher CLas acquisition (2.7 times more ACP acquire CLas in presence of flush shoots; Setamou et al. 2016)
- Higher CLas transmission when flush shoots are present (Hall et al. 2016)
- Higher CLas titers in leaves during flush cycles (Ibanez & Stelinski, 2019)

Flush-based (phenology) versus nominal threshold

M. Setamou (Texas A & M)

Border sprays reduced cost

Threshold based sprays: Phenology-based + Border sprays:

9 whole grove sprays

6 whole grove sprays 3 Border sprays (0.3)

Insecticide Savings:

 $\% Savings = 100 \times \frac{(9-6.9)}{9} = 23.3\%$

Insecticide savings depend on grove size

Can you expect greater biological control of ACP by limiting sprays to 3-4 / year?

- The evidence does not support this hypothesis
- There is a measurable decrease in ACP survival caused by natural enemies in unsprayed groves season long, which is disrupted when applying only 3-4 sprays annually.
- Even relatively minimal insecticide use for ACP appears to have large impact on activity of natural enemies on this pest

Managing psyllids while reducing cost

- Psyllid density is related to tree stress—more psyllids--> higher damage, which compromises tree health (yield)
- Spray for adults at bud break at the beginning of first flush before there is feather flush on which adults can lay eggs.
- If the pest population (and the resulting damage) is sufficiently low, it might not pay to take control measures
- As the pest population continues to rise, it reaches a point where the resulting damage (=reduced immune response) would justify taking control measures
- 0.2 psyllids per tap seems like an effective ballpark.
- Border sprays between flush cycles can also reduce cost

Funding: Thank you CRDF

FLIPADELPHIA

FLIP FEIA

2019-2021 Team

