

Information about ongoing UF/IFAS citrus research projects that will result in future tools for the Florida citrus industry

This publication contains brief summaries of current research being led by UF/IFAS citrus scientists located at UF/IFAS research centers in Gainesville, the Citrus Research and Education Center in Lake Alfred, Southwest Florida Research and Education Center in Immokalee, the Indian River Research and Education Center in Fort Pierce and the North Florida Research and Education Center in Quincy. This research advances our knowledge about growing citrus in Florida including fighting HLB, improved grove management, and better nutrition recommendations. While definitive recommendations and findings are still in development, these updates provide insights into our ongoing progress. Please contact the faculty listed with each summary for more information or to discuss their research. More resources are available on-line at **citrusresearch.ifas.ufl.edu**.

Acronyms

ACP: Asian Citrus Psyllid CLas: *Candidatus* Liberibacter asiaticus CREC: Citrus Research and Education Center FDACS: Florida Department of Agriculture and Consumer Services HLB: Huanglongbing IPC: Individual Protective Covers IRREC: Indian River Research and Education Center NFREC: North Florida Research and Education Center PGR: Plant Growth Regulator SWFREC: Southwest Florida Research and Education Center

Photo Credits

Lauren M. Diepenbrock Tyler Jones Robin M. Koestoyo Eric Middleton Tonya R. Weeks Mongi Zekri UF/IFAS

Table of Contents

Influence of Groundcovers on Citrus Yield and Water Use for Commercial Applications4
Early Economic Performance of Selected Rootstocks in Commercial Settings5
Citrus Growers' Willingness to Pay and Perceptions of Cover Crops
Cover Crops in Citrus – A Cost-Benefit Analysis
Predator Screening for Lebbeck Mealybug
Developing Management Practices for Chilli Thrips in Screenhouse Production Systems
Sanitation and Minimizing Spread of Lebbeck Mealybug10
Establishing Healthy Citrus Plantings in the Face of Persistent HLB Pressure11
Developing Snail Management in Citrus Groves
Identification of Natural Enemies of the Lebbeck Mealybug13
Evaluation of Novel Release Device of Repellents for the ACP14
Lebbeck Mealybug Seasonal Population Development15
Red Imported Fire Ant (Solenopsis invicta) Management in Citrus Groves
Integrated Management of Sting Nematode and Citrus Root Weevil in Newly Planted Citrus Trees17
Homeowners Involvement in the Management of Asian Citrus Psyllid (Diaphorina citri) in Residential Areas18
The Effects of Wildflower Plantings by Grove Windbreaks on Arthropod Populations19
Paratransgenesis for Reducing Transmission of Vector-Borne CLas20
Antibacterial FANA Oligonucleotides as a Novel Approach for Managing the Huanglongbing Pathosystem
Biologically-Based Management of Citrus Pests22
Eliminating Fire Ants Improves Biological Control of Asian Citrus Psyllid23
Comparisons of Economic Thresholds for Asian Citrus Psyllid Management Suggest a Revised Approach to Reduce

Management Costs and Improve Yield 24

Published August 2022

Identification of Natural Sweeteners and Sweetness Enhancers in Citrus
Wounding and Other Considerations Associated with Trunk Injections
Is Trunk Injection of Imidacloprid Effective for Asian Citrus Psyllid Management? 27
Trunk Injection to Reduce Preharvest Fruit Drop and Restore Health of HLB- Affected Citrus Trees
Evaluation and Validation of Novel HLB Tolerant/ Resistant Citrus Hybrid Scion Cultivars29
Individual Protective Covers
Hedging 'Sugar Belle'® to Reduce Soft Fruit Incidence
'UF SunLime' and 'UF RedLime': Two New Finger Lime Cultivars for the Specialty Citrus Market32
Utilizing Genetic-based Solutions for Developing HLB-Resistant Citrus
Evaluating HLB Resistant Hybrids as Interstocks and Rootstocks
Getting to the Point: What Happens When Citrus Cell Meets CLas Bacteria? 35
Citrus Genome Sequencing to Support Modern Genetic Improvement in the Fight Against HLB
'LB8-9' Sugar Belle® and Lemons Tolerate HLB: How Do They Do That? 37
New OLL Sweet Orange Clones Producing Exceptional Pre-HLB Fruit Quality
Development of High Quality True Sweet Oranges to Replace Hamlin
Two High-Quality Mandarin Selections Approved for Release
Progress with Rootstock Screening for HLB Tolerance/Resistance41
Strategies to Enhance Pre-Emergence Herbicide Performance in Citrus42
Impacts of Glyphosate Application on Pre-Harvest Fruit Drop in 'Valencia' Citrus Add Trees43
Cover Crops for Weed Suppression in Citrus Row-Middles44
Cybridization for Plant Improvement: Grapefruit Cybrids have Potential for Canker Improvement45
Effectiveness of Preharvest-Applied Fungicides for Postharvest Diplodia Stem-end Rot Control on Grapefruit46

Evaluation of CIO ₂ Gas for Reducing Postharvest Diplodia Stem-end Rot on Grapefruit before Degreening	47
Postharvest Degreening of 'Bingo' Mandarin Fruit	48
Large-Scale Field Evaluation of Grapefrui Scion/Rootstock Combinations to Identify Potential Tolerance Against Huanglongbing	t 49
Irrigation and Fertilization Management for Grapefruit Cultivated Under Protectiv Screen	'e 50
Hand Pruning and Photoselective Netting Improve Yield and Quality of Mandarins Cultivated Commercially Under Protectiv Screen) /e 51
Impact of Oak Mulch on Florida Flatwood Soil Characteristics and Nutrient Uptake of HLB-Affected Citrus	ls 52
Impact of HLB on Fate of Fruit	53
Effect of Gibberellic Acid and 2,4-D in Mitigating Pre-Harvest Fruit Drop of HLB Affected Sweet Orange	- 54
Leaf Sampling: Selecting the Right Leaf Makes a Difference	55
Keeping Cool with Particle Films	56
Made in the Shade	57
Managing Dieback in 'Bingo' Mandarin	58
Citrus Huanglongbing is an Immune- Mediated Plant Disease and its Implications in HLB Management	59
Non-Transgenic CRISPR Gene Editing is Ready to Join the Force to Fight HLB	60
Delivering Therapeutic Materials Through Trunk to Treat HLB-Affected Citrus Trees	61
Collaborative Approach Between Academics, Growers, and Agrochemical Industry to Discover, Develop, and Commercialize Therapies for HLB	62
Can We Use an Insect Virus to Control ACP in the Groves?	63
Optimal Bt Toxins and Gene Silencing RN, for Management of ACP to Mitigate the Impact of HLB	As 64
HLB Disease Management	65
Field Trials with the Antimicrobial Peptide SAMP	؛ 66
Diplodia Stem End Rot is a Complex Disease	67

What is Causing that Greasy Green Color on My Grapefruit?68
How Temperature and Relative Humidity Affect the Number of Spores Produced by the Fungus Responsible for Citrus Black Spot
Can Phytophthora Management Stop the Nibbling Away of My Profits in the Days of HLB?70
Using Citrus Tristeza Virus (CTV)-Based Vector as a Platform for the Management of Huanglongbing (HLB)71
A Culturable <i>L. crescens</i> Model for Functional Genomics of CLas72
Creating a Model to Understand the Pathogenicity Mechanism of CLas73
Tolerance of Newly Developed Citrus Cultivars on Different Rootstocks to HLB
Unraveling Candidatus Liberibacter Asiaticus and Citrus Tristeza Virus- Phloem Interactions75
Approaches Toward Huanglongbing Tolerance
Citrus Nutrient Management on HLB- Affected Round Orange and Grapefruit Groves on Flatwoods and Ridge Soils77
Influence of Elevated Manganese Rates on Growth Parameters, Nutrient, and Biomass Accumulation of HLB-Affected Citrus Trees in Florida78
Variable Rates of Iron: Impacts on Growth and Development of HLB-Affected Trees 'Bingo' In Florida
Water Use Assessment for Citrus Trees Affected by HLB
Development of Root Nutrient and Fertilization Guidelines for HLB-Affected Orange and Grapefruit Trees
Citrus Nutritional Therapies for Improving Nutrient Accumulation, Root Health, Yield, and Fruit Quality on HLB-Affected Orange and Grapefruit Groves on Flatwoods and Ridge Soils
Effect of Nitrogen, Calcium, Magnesium, Manganese and Zinc on Leaf Nutrient Status, Growth, and Yield of Mature HLB- Affected Citrus Trees
Measuring Soil Health in Florida Citrus Groves
Improving Soil Health with Cover Crops in Florida Citrus Groves85