Advancements in Automated Trunk Injection of Citrus Trees

Yiannis Ampatzidis, Professor
Agricultural and Biological Engineering
UF/IFAS Southwest Florida Research and Education Center
Citrus Expo, Tampa, FL
August 21, 2025

Existing Tree Trunk Injection Methods

- Manually operated; physical strain and undesirable working conditions
- Tree wounding
- Mostly drill based; drilling damages the xylem vessels
- Long duration to complete the injection process (up to 24 hours)
- Mostly one-sided injection

Development of an automated delivery system for therapeutic materials to treat HLB infected citrus

CDRE, USDA. Budget: \$3.4M

PI: Dr. Batuman

Co-PIs: Dr. Ampatzidis, Dr. Albrecht, Dr. Alferez, etc.

Duration: 01/01/2019 - 12/31/2024.

EXPLORATORY DESIGNS

EXPLORATORY PROTOTYPES

Prototype 1

Prototype 2

Observations

- Uneven clamping force and trunk centering problems
- Excessive deflection of the positioning arm
- Insufficient needle penetration
- Clogging, excessive leaks and zero flow

END EFFECTOR INJECTION TOOL

EXPLORATORY DESIGNS

NEEDLE DESIGNS

Observations

- Pointed needle tips splits the trunk
- Larger outlet surface area prevents clogging but leads to excessive leaks
- Shallow penetration depths leads to excessive leaks

Automated Delivery System

COMPARING INJECTION DURATION

COMPARING WOUNDING

Manual system

Automated system

Zhou C. and Ampatzidis Y., 2024. AI-enabled 3D vision system for rapid and accurate tree trunk detection and diameter estimation. 16th International Conference on Precision Agriculture (ICPA), Manhattan, Kansas, USA, July 21-24.

Orchard Trees

Conclusion – Take Home Message

- **Proven effectiveness**: Automated trunk injection delivers oxytetracycline efficiently to HLB-affected citrus trees.
- **Key advantage**: Reduces labor needs, improves consistency, and has potential for large-scale adoption in commercial groves.

Current challenges:

- System mobility and deployment efficiency
- Speed of injection and repositioning
- Reliability of injector clamping and antibiotic delivery

Next steps:

- ➤ New design integrates Al-driven guidance and four robotic self-propelled injectors to improve speed, efficiency, and precision.
- Collaborative proposal with industry partners and robotics experts to advance development and field testing.
- Take-home message: Automated, Al-enabled trunk injection systems hold strong promise for scalable, precise, and efficient management of HLB.

THANK YOU

Yiannis Ampatzidis

Professor

Agricultural and Biological Engineering Department

Southwest Florida Research and Education Center, Immokalee

University of Florida

Office: 239-658-3451

Email: i.ampatzidis@ufl.edu

Twitter: @PrecAgSWFREC

