Genetic transformation of citrus: understanding transformation timelines, progress made and future expectations

Manjul Dutt, Assistant Professor
UF/IFAS Citrus Research and Education Center
Lake Alfred
August 20, 2025

Take home message

- Genetic transformation can modify the DNA of elite Citrus varieties to enhance HLB tolerance.
- It often takes 10–14 years from discovery to commercial release of a GM plant, due to extensive testing, regulatory review, and field trials.
- UF-CREC Citrus improvement program has several potential candidates that offer promise in the fight against HLB.

What is Genetic Transformation?

Genetic transformation is a process to **modify the DNA of a plant (or any organism)** to give it **new qualities**, like disease resistance, better yield, drought tolerance, or pest resistance.

How does Genetic Transformation work?

- Scientists **identify a useful gene** for example, a gene that helps citrus survive HLB.
- They **insert that gene into the DNA** of Citrus using one of several methods.
- Citrus grows with that new ability (HLB tolerance).

Understanding Transformation Timelines

Contrary to common misconceptions, the Citrus genetic transformation and plant release process can be time-consuming.

- Year 1 Developing the DNA constructs and inserting them into the plant's cells. Developing the modified plant in tissue culture.
- Year 2 -3 Care for the trees in the greenhouse to support proper bud development for propagation. Conduct molecular analysis to identify superior trees.
- Year 3-4 Propagate trees for replicated trials and evaluations (greenhouse and/or field).

Understanding Transformation Timelines

- Year 4-8 Evaluate trees in greenhouse and/or field for HLB tolerance.
- Year 5 onwards
 - Identify superior lines based on initial evaluations and establish larger multi-location field trials.
 - Get germplasm certified through the DPI parent tree program.
 - Initiate paperwork for eventual release.
- Year 6 onwards the regulatory approval process

Understanding Transformation Timelines

Cultivar registration & commercialization

- Year 8 onwards
 - Official cultivar registration.
- Planting material multiplication for large-scale nursery propagation.
- Market introduction, distribution, and outreach to growers.

Juvenile tissue derived Citrus GMO timeline

Mature tissue derived Citrus GMO timeline

Mature tissue shortens the time it takes for a GM tree to flower and fruit

- The UF-CREC citrus improvement program has evaluated hundreds of transgenic lines in the last 10 years.
 - Antimicrobial Peptides
 - Systemic Acquired Resistance (SAR) inducing proteins
- Two plant-based proteins, NPR1 and SABP2, have resulted in enhanced tree growth while reducing $C\alpha$ Las levels in the phloem.

- UF-CREC has recently established a new 20acre GMO evaluation field site (expandable to 50 acres) to rapidly screen large populations.
- We are evaluating not only GMO scions, but also GMO rootstocks that can potentially protect the non-GMO scion.
- Specific combinations include:
 - GMO sweet orange/grapefruit scion Non-GMO rootstock
 - Non-GMO sweet orange /grapefruit scion GMO rootstock
 - GMO sweet orange /grapefruit scion GMO rootstock

 We are generating field data that validates our preliminary observations, which will ultimately lead to GMO scions and rootstock release recommendations.

- A population of trees with stacked genes that function in different ways is being produced.
 - SAR gene stacked with BT gene
 - SAR gene stacked with BT gene and β-caryophyllene (psyllid deterrent) gene.

How can we utilize GM technology to screen germplasm faster?

Overexpression of FT in the Phloem using an AtSUC2-CcFT3 construct can result in early flowering within 18 months of transformation.

Precocious flowering one-year old non-transgenic 'Valencia' scion grafted onto *AtSUC2-CcFT3* transgenic rootstock.

- (A) Flower bud emergence within 21 days following budding. Insert shows enlarged image of emerging flower buds
- (B) fully expanded flower buds,
- (C) fully open flowers,
- (D) developing sweet orange fruit

Looking deeper into HLB-resistant species – How can they help us?

- Several wild citrus as well as some citrus relatives are resistant to HLB.
- Understanding their mechanism of resistance is providing us with
 - Genes to develop GMOs.
 - Genes for CRISPR.

Identification of CAP genes in finger lime (Citrus australasica) and their role in plant responses to abiotic and biotic stress Lamiaa M. Mahmoud, Nabil Killiny & Manjul Dutt

✓ Scientific Reports 14, Article number: 29557 (2024) Cite this article 2237 Accesses 4 Citations 2 Altmetric Metrics ORIGINAL RESEARCH article Front, Plant Sci., 20 October 2022 Sec. Plant Breeding Volume 13 - 2022 | https://doi.org/10.3389/fpls.2022.1019295 Insights into the mechanism of Huanglongbing tolerance in the Australian finger lime (Citrus australasica) Lamiaa M. Mahmoud^{1,2†} Daniel Stanton¹ Stacy Welker¹ Citrus Research and Education Center, University of Florida, Lake Alfred, FL. United States Pomology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt

THANK YOU

