Understanding HLB Tolerance

Amit Levy, Associate Professor
UF/IFAS Citrus Research and Education Center
Lake Alfred
August 20, 2025

Take Home Message

- Understanding what makes a tree tolerant to HLB can help us target the correct treatments and gene editing candidates
- We compared different HLB susceptible and tolerant varieties
- We found differences in sugar transport, water usage, and immunity
- Susceptible varieties respond stronger than tolerant varieties
- NPR1 seems to give true tolerance
- Early stages of field testing in progress
- Waiting for regulatory approval

Tolerance is when the plant has the pathogen but doesn't develop a disease.

Resistance is when the pathogen can't infect at all.

HLB Susceptible and Tolerant Variety Comparison

Both infected with CLas

What Are The Main Differences?

Tolerant Varieties: Sugar Movement

In tolerant variety sugar movement does not stop after infection

Tolerant Varieties: Water Stress

Susceptible: Transpires more, but has transpiration shuts down after drought stress

Tolerant: Transpires less, but keeps transpiring after drought stress

Tolerant: Orri

Tolerant Varieties: Stress Response

Reactive Oxygen Species Measures the tree stress

Measures the tree stress response

Tolerant varieties' stress response does not increase after infection

Tolerant Varieties Respond Slow and Steady to HLB

Susceptible Varieties

Weak Starting point

Strong Defense Response

Phloem Block

HLB Symptoms

Strong Starting Point

Weak Defense Response

No Phloem Block

No HLB Symptoms

Do we have a way to make trees tolerant?

NPR1 Transgenic Plants

- NPR1 is immune regulator, type of plant protein
- Regulates one of the defense systems in a tree

 Research has shown that an increase in the NPR1 creates a tolerance to pathogens (ex. HLB)

HLB-infected citrus tree with NPR1

NPR1 Field Trials, Ft. Pierce (Hamlin)

May 2019

August 2025

What makes NPR1 trees tolerant?

We Tested This Question with HLB Infection

- No treatment
- Infection with healthy psyllids
- Infection with infected psyllids

ROS Response

NPR1 plants do not increase ROS

Callose Response

Callose is deposited after stress and blocks the phloem

NPR1 plants do not increase callose

Salicylic Acid Response

Salicylic Acid is a plant defense hormone

Salicylic Acid Response

NPR1 plants do not increase Salicylic Acid

Salicylic Acid is a plant defense hormone

Conclusion

- The key for HLB tolerance is **UNRESPONSIVENESS**-not responding too strong to HLB, keeping balanced and stable response
- Strong immunity is important
- NPR1 seems to create real tolerance because it is reducing the response
- NPR1 trees are now going through the approval process

THANK YOU

Collaborators

- Zhonglin Mou
- Christopher Vincent
- Vladimir Obrovic
- Yotam Zait

Funding

United States Department of Agriculture National Institute of Food and Agriculture

