Sting Nematode

Impacts and management

Larry Duncan, UF/IFAS CREC

Images courtesy Jon Eisenback, VPI

Sting nematode

- First recognized as widespread pest of young trees when replanting following the freezes of 1980s. Now replanting is in response to HLB.
- Large nematode, adapted to <u>coarse</u>, <u>sandy soil</u>.
- Feeds at root tip, causes stubby root symptoms.
- Moves downward when soil dries.
- <u>Very wide host range, including many</u> weed species.

- Sanitation
- Resistance/tolerance
- Cultural
- Chemical/Biological

Sanitation

- Resistance/tolerance
- Cultural
- Chemical/Biological

Nematode Rootstock Certification Program

- Citrus nematode
- Burrowing nematode
- Coffee lesion nematode

- Not Sting nematode because it is too widespread, unlike the others.
- Became a moot point when nurseries were all require to grow containerize trees

- Sanitation
- Resistance/tolerance
- Cultural
- Chemical/Biological

In a 1985 survey of common rootstocks, all were heavily infested and damaged by sting nematode.

- Changsha mandarin
- Cleopatra mandarin
- Flying Dragon trifoliate orange
- Roubidoux trifoliate orange
- Jacobson trifoliate orange
- Alemow
- Milam lemon
- Palestine sweet lime
- Sour orange
- Carrizo citrange
- Morton citrange
- Rusk citrange
- Swingle citrumelo
- Rubidoux x Koethen Rangpur x Troyer

- None reported in older, conventional lines.
- CRDF trials with newer and experimental UF and USDA rootstocks are ongoing

- None reported in older, conventional lines.
- CRDF trials with newer and experimental UF and USDA rootstocks are ongoing.
- To date some lines appear more tolerant than others. This is Cleopatra mandarin.

- nematode

+ nematode

- None reported in older, conventional lines.
- CRDF trials with newer and experimental UF and USDA rootstocks are ongoing
- To date some lines appear more tolerant than others. This is UFR-5.

- nematode

+ nematode

- None reported in older, conventional lines.
- Trials with newer and experimental UF and USDA rootstocks are ongoing.
- Relative root mass when challenged by nematodes compared to unchallenged root mass. Note that some of the promising rootstocks (red) have identical or near-identical ancestry.
- Will require field trials.

- Comparison of best UF and US rootstocks from preliminary trials.
- Relative results vary between trials, but several conventional rootstocks consistently intolerant to sting nematode, conventional with trifoliate heritage intermediate, and a few consistently more tolerant than conventional.
- Will require field trials as well as optimization considering other traits.

Rootstock

- Sanitation
- Resistance/tolerance
- Cultural
- Chemical/Biological

Sting nematode

Non-host cover crops

- Sunn hemp (*Crotalaria juncea*) can suppress sting nematode prior to planting.
- Not practical for row middle management.
- Excellent green manure.

Sting nematode

Non-host cover crops

- Perennial peanut (Arachis glabrata) can suppress sting and dagger nematode in row middles.
- Establishes slowly, requires initial irrigation.

- Sanitation
- Resistance/tolerance
- Cultural
- Chemical/Biological

New nematicide chemistries objectives

- CRDF trial to estimate profitability of nematode management in young HLB-affected trees
- 2. Compare nematicides for efficacy
 - Six nematicides
 - Eight, 4-tree plots per treatment
 - All but one nematicide treatment occurs spring and fall

Chemical management

- Untreated trees larger initially (by chance).
- Root mass for untreated trees was initially highest, eventually lowest.
- Oxamyl effect on roots was superior among the nematicides tested.

Chemical management

- Nematicide efficacy was variable, but oxamyl consistently reduced nematodes compared to the untreated trees.
- The 'area under the curve' or overall average nematode population size was least for oxamyl and greatest for aldicarb.

Chemical management

- Fruit weight of 4-year-old trees was significantly related to the size of trees at the beginning of the trial and to the overall abundance of sting nematodes.
- However, the treatments did not increase yield enough to be profitable.

Sting nematode and HLB

 Will trees respond profitably to sting nematode IPM if HLB infection is delayed for several years?

Sting nematode and HLB

 CRDF trial to measure the interaction between HLB and sting nematode using IPCs and nematicides.

Sting nematode and HLB

 CRDF trial to measure the interaction between HLB and sting nematode using IPCs and nematicides.

 Ideally, sting nematode will one day be managed in citrus with a combination of cover cropping with non-host plants, rootstock tolerance/resistance, HLB avoidance, and judicious use of nematicides.

Thank you!

Diaprepes Root Weevil Impacts and management

Larry Duncan, UF/IFAS CREC

Diaprepes root weevil

- Caribbean pest introduced to Florida in 1960s
- Adults feed and lay eggs in canopy
- Larvae feed on roots, develop in soil
- Adults emerge most of the year with peaks in Spring and sometimes Fall
- Pest-disease complex with *Phytophthora* spp.
- Damage increased by HLB

- Plant appropriate rootstock depending on *Phytophthora* species
- Improve drainage when necessary
- Monitor adult emergence to time treatment with adulticide and ovicide
- Chemical barriers on soil surface and entomopathogenic nematodes can reduce larvae in soil and adult emergence

Diaprepes root weevil

Weevil monitoring with traps

- Adult weevils that emerge from soil can be captured in a boll weevil trap attached to a coneshaped ground trap.
- Tedders traps capture adult weevils that mistake the base for a tree trunk.
- The traps are useful for research, but are inefficient for routine monitoring.

Weevil monitoring by scouting

 Damage to leaves is distinctive, but is easily overlooked if adults are not abundant. When abundant, adults are readily seen in the canopy.

Diaprepes root weevil

 Weevils have multiple generations with continuous development above- and below-ground during all but the coldest months.

What is needed to improve weevil IPM?

- Better detection
- Comprehensive evaluation of:
 - New insecticides
 - Physical barriers
 - EPN utility

Weevil monitoring belowground

• Examine roots when pulling and resetting trees. If clipping to replant a block, push a few trees to examine roots.

Fabric Soil Barriers

- Reduced soil entry by neonate larvae by >97% in laboratory
- Reduced adult capture by >99% in field when traps placed on fabric.
- No effect on capture in traps adjacent to fabric (i.e., weevils did not migrate to escape at edge of barriers).

- Flat bed applicators being used in Florida
- Sloped bed applicators used in Texas

Soil accumulation, weed germination and root penetration of fabric can be a problem

Damage beneath fabric

Source (penetration, edges)? Frequency? Fabric profitability?

Requires experimental design to include non-fabric comparison.

Foliar barriers (IPCs) Best of both worlds

- No ACP
- No weevil egg laying
- Faster growth, more efficient water and nutrient use.

However, unique IPM tactics required inside covers.

Foliar barriers (IPCs)

Three months after IPC removal.

- Will the differences between covered and uncovered trees persist as they encounter weevils and HLB while maturing and bearing fruit?
- Will they respond differently to pest management?

Not covered

IPC

Foliar barriers (IPCs)

Responses to Hurricane Ian

- 17% of uncovered trees were tilted >45° compared to 1.5% of the formerly IPC trees
- Caused by damaged, poorly developed root system.

Nope....

Rotovated – Friable soil, no clumps, but uneven lanes. A blade or a roller needed to level the bed One pass of roller on the rotovated bed

5.5-feet on each side of trunk, buried 6 inches

Electric branding iron

Hot knife for stake

Trees in ground next week

Treatments

- Fabric-Bare soil
- IPC-Bare tree
- *Phytophthora* Tolerant-Susceptible

Measure

- Tree growth
- Fruit yield
- Root channelling
- Water use
- Adult weevil presence

Cost:

242 trees/acre @ 10-foot spacing = **\$1452** for fabric Tree defenders = **\$2117** Land preparation Fabric installation Fabric issues (cleaning, resetting trees, etc.)

Benefit:

Larger trees and greater yield Less herbicide and insecticide use Greater water use efficiency

Profitability:

TBD

Issue Date: 5/17/1 Supercedes: 4/15/1

LUMITE GROUND COVER

BLUE LINE

TYPICAL PHYSICAL FABRIC PROPERTIES

TYPICAL PROPERTIES	TEST METHOD	AVERAGE VALUE
TENSILE STRENGTH	ASTM D4632	185 LBS X 115 LBS
ELONGATION AT BREAK	ASTM D4632	20%
BURST STRENGTH (MULLENS)	ASTM D3786	335 PSI
TRAP TEAR	ASTM D4533	75 LBS X 60 LBS
PUNCTURE	ASTM D4833	70 LBS
A.O.S. STANDARD SIEVE	ASTM D4571	40
MASS PER UNIT AREA	ASTM D5261	3.2 OZ/YD ²
FLOW RATE (FALLING HEAD)	ASTM D4491	10 GPM/FT ²
PERMEABILITY	ASTM D4491	0.005 cm/sec
U.V. RESISTANCE - STRENGTH RETAINED AFTER 2500 HOURS XENON ARC	ASTM D4355	70%
MARKER YARNS		12" SPACING

Water infiltration must be equivalent to that of Lumite to avoid runoff.

Thank you!

