Citrus Nutrition Box Program: The Final Results

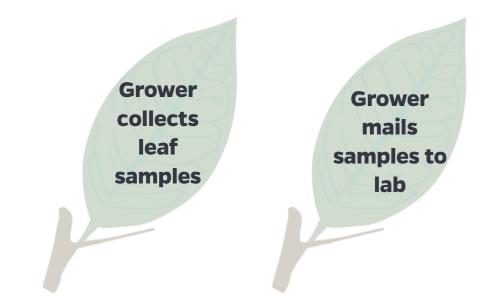
Jamie Burrow, Tripti Vashisth, Davie Kadyampakeni UF/IFAS Citrus Research and Education Center January 22, 2025

Key messages

- Nutrient patterns can develop over time
- More severely HLB-affected trees (more dieback) had higher nutrient levels than trees with less dieback
- Numerically numbers are low, visually the trees are improving
- Regardless of variety, nutrients are needed the same
- Fertilizing based on leaf nutrient analysis is doable and can improve tree health

Program recap: How it began

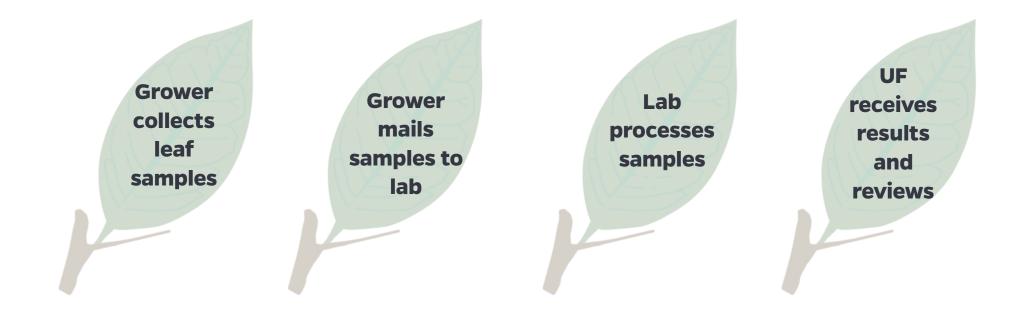
- Provided resource box
 - Instructional documents
 - Calendar
 - Sampling bags
 - Pre-addressed envelopes/boxes



- Collaboration between growers and UF
- Quarterly leaf and annual soil sample collection
- Bags provided and labeled with a unique grower number

Grower
collects
leaf
samples

- Only cost to grower
- Pre-addressed envelopes provided



- Lab processed samples
- Provided results to citrus nutrition team

• Nutrition team reviewed individual results

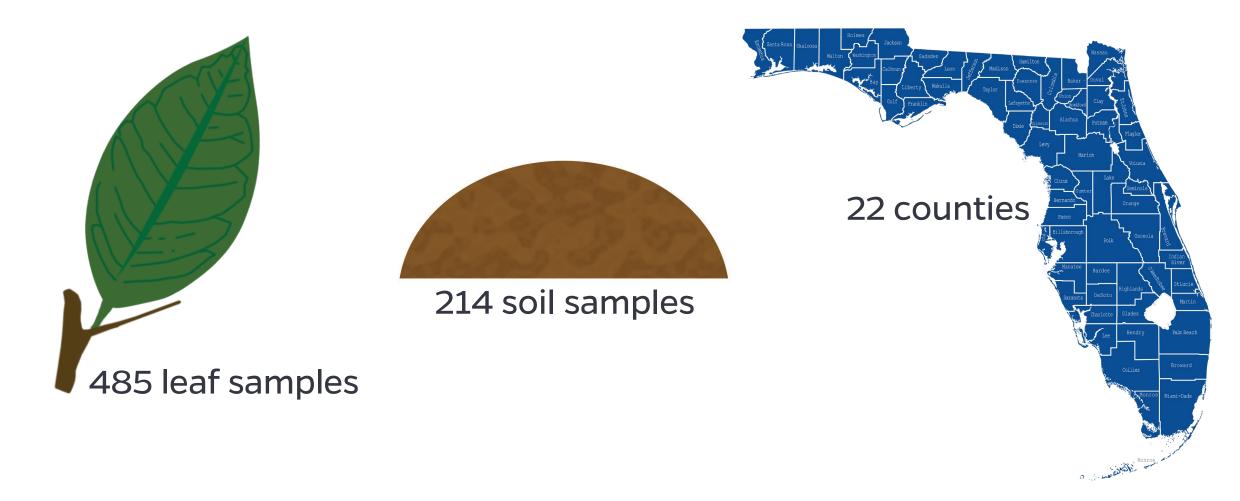
Graphics: T. Weeks, UF/IFAS

- Results sent to grower via email
- Requested additional information to assist in future recommendations

Disclaimer: Wide range of variables

- Varieties and rootstocks
- Processed vs. fresh
- Location
 - Soil type
 - Rainfall
- Tree age
 - 6 months to 30+ years
- Tree health
- Submitted samples varied year to year

Not a replicated trial that could determine statistical significance, but can define trends


Asymptomatic/ mild symptoms

Producing fruit, symptomatic

Symptomatic, declining

Photo Credit: L. Tang, UF/IFAS

Program participation – October 2019 – October 2023

Graphics: T. Weeks, UF/IFAS; AdobeStock

Tree health and leaf analysis

Tree 1: 24

Ν	Ρ	K	Ca	Mg	S	Mn	Zn	Cu	Fe	В
2.6	0.16	1.4	3.4	0.4	0.3	38	32	17	62	78

Ν	Ρ	Κ	Ca	Mg	S	Mn	Zn	Cu	Fe	В
2.7	0.16	1.5	3.5	0.3	0.3	60	45	19	64	96

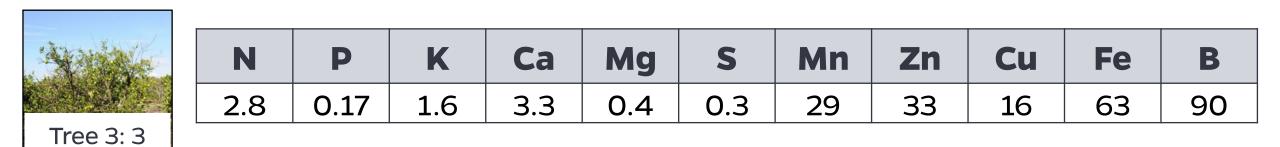
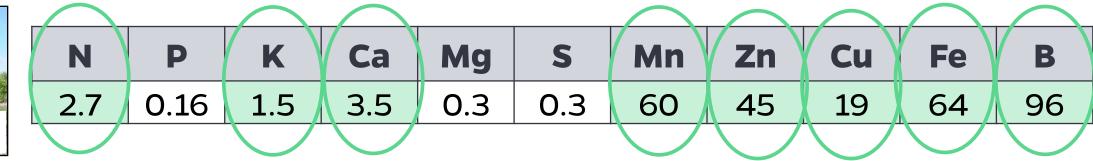


Photo Credit: L. Tang, UF/IFAS


Tree health and leaf analysis

Ν	Ρ	Κ	Ca	Mg	S	Mn	Zn	Cu	Fe	В
2.6	0.16	1.4	3.4	0.4	0.3	38	32	17	62	78

Tree 1: 24

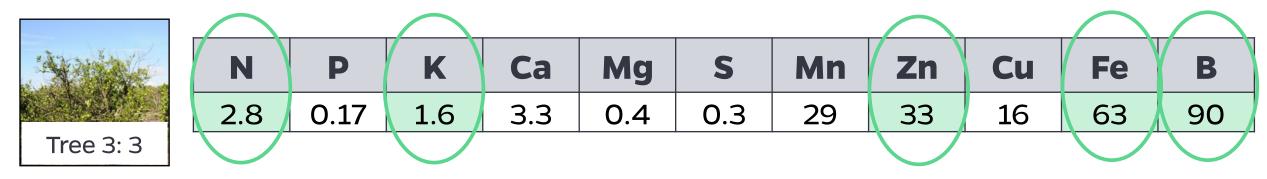
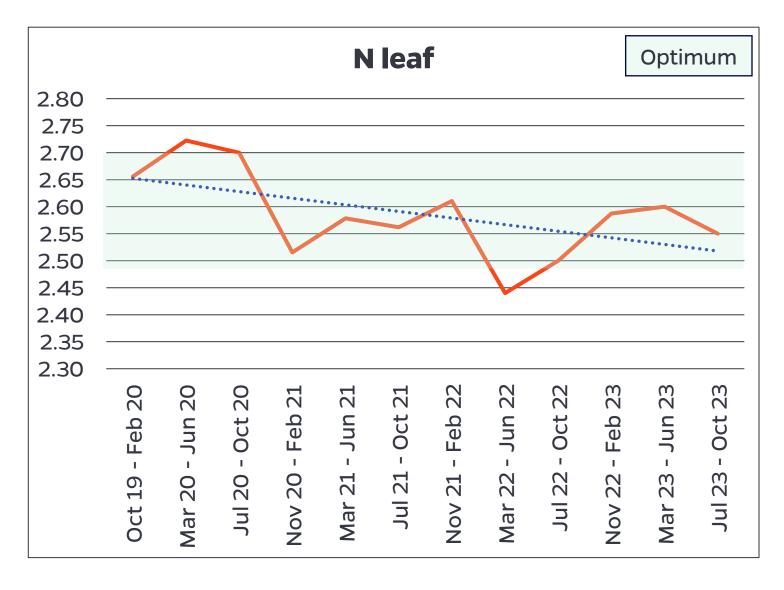


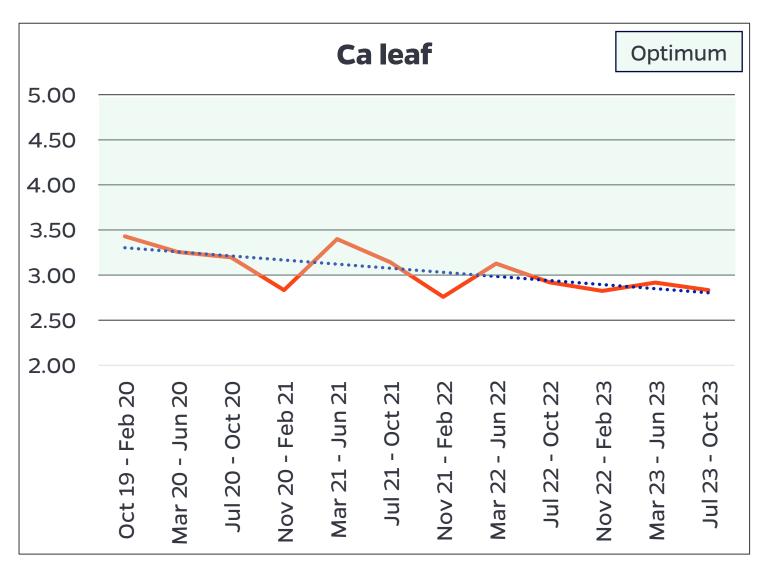
Photo Credit: L. Tang, UF/IFAS

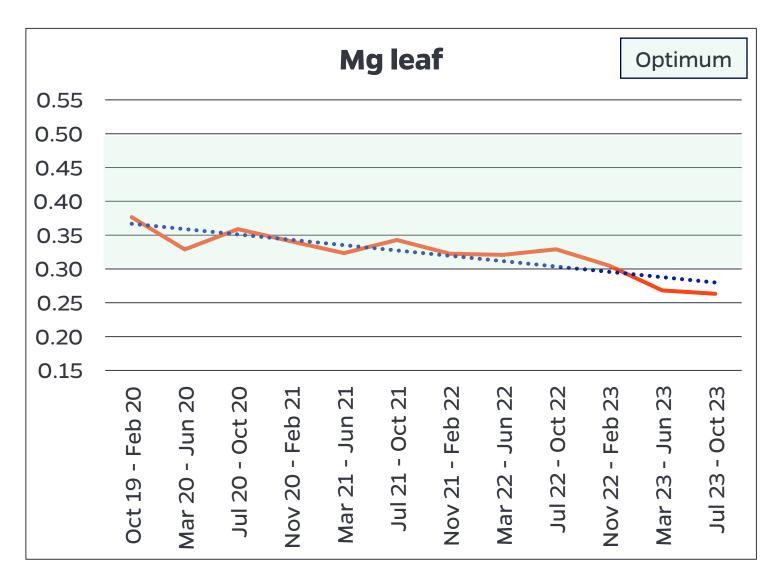
Statewide trends - Oranges


<u>Date</u>	N leaf	P leaf	K leaf	Ca leaf	Mg leaf	S leaf	Mn leaf	Zn leaf	Cu leaf	Fe leaf	B leaf
Oct 19 - Feb 20	2.7	0.16	1.5	3.4	0.38	0.30	52	43	14	63	85
Mar 20 - Jun 20	2.7	0.16	1.5	3.3	0.33	0.31	39	29	8	65	79
Jul 20 - Oct 20	2.7	0.15	1.5	3.2	0.36	0.32	51	36	12	70	91
Nov 20 - Feb 21	2.5	0.16	1.5	2.8	0.34	0.33	45	34	9	66	94
Mar 21 - Jun 21	2.6	0.15	1.3	3.4	0.32	0.34	34	27	8	70	89
Jul 21 - Oct 21	2.6	0.15	1.4	3.1	0.34	0.28	43	39	16	69	98
Nov 21 - Feb 22	2.6	0.17	1.5	2.8	0.32	0.31	39	32	10	72	95
Mar 22 - Jun 22	2.4	0.14	1.5	3.1	0.32	0.32	35	27	9	74	89
Jul 22 - Oct 22	2.5	0.17	1.5	2.9	0.33	0.28	44	47	13	80	91
Nov 22 - Feb 23	2.6	0.15	1.6	2.8	0.31	0.26	49	74	26	70	89
Mar 23 - Jun 23	2.6	0.14	1.6	2.9	0.27	0.28	40	57	14	57	71
Jul 23 - Oct 23	2.6	0.13	1.4	2.8	0.26	0.22	68	80	14	62	73

Optimum

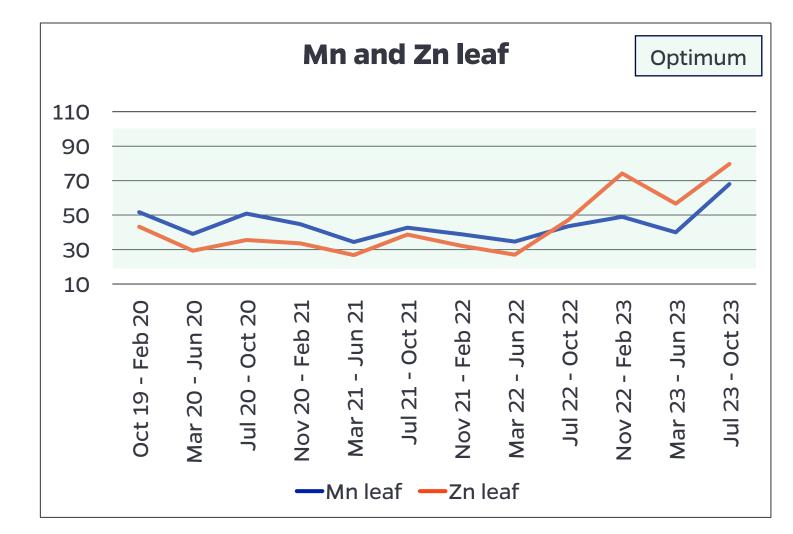
Statewide downward trend – Nitrogen (N)


- Often in the optimum range
- Saw a gradual decline
- Monitor trends over time, not just one sampling to another


Statewide downward trend – Calcium (Ca)

- Saw a decline especially going into year 3
- Less samples in year 3
- Possible interaction of HLB– affected trees with calcium
 - Maybe utilizing more?
 - Based on observation, there should be an effort to increase calcium

Statewide downward trend – Magnesium (Mg)


- Similar to nitrogen and calcium, downward trend
- Needed for photosynthesis
- Limited Mg affects overall tree growth

Statewide trend – Manganese (Mn) and Zinc (Zn)

- Moving together in the same direction as it should
- Always in the optimum range, but HLB-affected trees should be near the higher end of optimum

Statewide upward trend – Iron (Fe)

- Iron was almost always in the optimum range
- Fewer samples in year 3
- Over time, there was a gradual increase
- Undetermined reason why, this is just a good thing!

It's more than just being in the optimum range

• Goal: Be in the optimum range

• But wait, there's more!

- Monitor levels often because the slightest change can cause you to fall out of where you need to be
- Watch over time, not just sample to sample

Comparison – Grower A

Beginning	Ν	Р	К	Са	Mg	S	Mn	Zn	Cu	Fe	В
Statewide	2.7	0.16	1.5	3.4	0.38	0.30	52	44	14	63	85
Grower A	2.6↓	0.12↓	1.5	3.7	0.2↓	0.33	32↓	28 ↓	5↓	53↓	834

Ending	Ν	Р	К	Са	Mg	S	Mn	Zn	Cu	Fe	В
Statewide	2.6	0.17	1.5	2.8	0.33	0.32	39	32	10	72	94
Grower A	2.6	0.15↓	1.7	2.6↓	0.24↓	0.28↓	38↓	28↓	16	83	112

↓ Grower sample is lower than statewide average

Comparison - Grower B

- Permission given to share results
- Grapefruit on Swingle, Central Region
- Severely HLB symptomatic and significant dieback
 - Tree rating #3 (50% or more dieback)
- Fully applied recommendations

Comparison - Grower B leaf analysis

<u>Sampling</u> <u>Date</u>	Ν	Ρ	К	Ca	Mg	S	Mn	Zn	Cu	Fe	В
Oct 19 - Feb 20	3.2	0.16	1.4	4	0.46	0.23	14	20	10	26	113
Mar 20 - Jun 20	2.9	0.14	1.5	3.4	0.44	0.33	16	112	3	31	121
Jul 20 - Oct 20	3	0.15	1.9	2.8	0.37	0.23	13	47	5	47	98
Nov 20 - Feb 21	2.7	0.14	2	2.9	0.4	0.29	13	25	5	39	107
Mar 21 - Jun 21	3	0.13	1.7	3.2	0.4	0.39	21	30	4	50	112
Jul 21 - Oct 21	2.7	0.11	1.6	3.1	0.39	0.26	46	54	7	43	102
Nov 21 - Feb 22	2.7↓	0.13↓	1.5	2.5↓	0.35↓	0.26	30	26	6↓	46	107

Optimum

Comparison - Grower B photo comparison

The difference a year can make

-2020

March

2021

Take home message

- Nutrient patterns can develop over time
- More severely HLB-affected trees (more dieback) had higher nutrient levels than trees with less dieback
- Numerically numbers are low, visually the trees are improving
- Regardless of variety, nutrients are needed the same
- Fertilizing based on leaf nutrient analysis is doable and can improve tree health

Now what?

- Nutrient patterns can develop over time
 - **ACTION:** Do frequent leaf analysis and watch for long term trends.
- More severely HLB-affected trees (more dieback) had higher nutrient levels than trees with less dieback
 - <u>ACTION</u>: Grow leaves first! You need leaves for photosynthesis and then fruit will happen.
- Numerically analysis is low, visually the trees are improving
 - **ACTION:** Keep fertilizing! It's a long process.
- Regardless of variety, nutrients are needed the same
 - **ACTION:** Nutrient recommendations are for all species, follow the guidelines.

Fertilizing based on leaf nutrient analysis is doable and can improve tree health.

Thank you!

- Program participants
- Extension agents, faculty, and CREC staff
- Citrus initiative funding from the state legislature

Thank You

