Antimicrobial strategies for controlling CLas and the Asian citrus psyllid

Current psyllid management requires significant input of insecticides

- Use of broad-spectrum insecticides targeting adult psyllids with possible rotation with insect growth regulators
- Applications made prior to new flush are most effective in reducing psyllid populations
 - 10-12+ annual sprays annually

Antimicrobials for reducing pathogen transmission

Current management of psyllids with broad spectrum insecticides is unsustainable

- High cost
- Physiological resistance

Challenge: Targeted manipulation of symbionts provides a unique opportunity for vector/pathogen management

- Symbiont elimination/suppression
 - Antibiotics
 - Bactericides: oligonucleotide suppression of Las and endosymbionts

Insecticide susceptibility—2017

Antimicrobials for reducing pathogen transmission

Current management of psyllids with broad spectrum insecticides is unsustainable

- High cost
- Physiological resistance

Can we manipulate microorganisms present in the vector and host plant to reduce pathogen transmission?

Disruption of symbionts for ACP/CLas management

- Candidatus Carsonella ruddii
- Candidatus Profftella armature
- Wolbachia (wDi)

- Candidatus Liberibacter asiaticus
- Wolbachia (wDi)

Ammar et al. 2011

Ammar et al. 201

- Candidatus Liberibacter asiaticus
- Wolbachia (wDi)

Antimicrobials for reducing ACP survival and Las transmission

Antibiotic treatments:

- Plants (Las)
- ACP (Las, endosymbionts)

Antisense RNA technologies:

- Reduce Las in plants
- Selectively eliminate Las symbionts

Management of Huanglongbing: EPA crisis declaration

Florida citrus lost an estimated \$7.80 billion between 2006-2014.

Three commercially available bactericides for Florida citrus:

- FireWall™ 50 WP: Streptomycin sulfate
- FireLine™ 17 WP: Oxytetracycline hydrochloride
- Mycoshield®: Oxytetracycline calcium complex base

Greenhouse Plant Assay: Firewall Vs. Fireline Foliar Spray Efficacy

FireWall and Fireline applied at label rate (200 PPM)

Greenhouse Plant Assay: Firewall Vs. Fireline Foliar Spray Efficacy

Positive values indicate reductions in CLas titer compared to day 0

Greenhouse Plant Assay: Firewall Vs. Fireline Foliar Spray Efficacy

- Positive values indicate reductions in CLas titer compared to day 0 in response to Firewall (stremptomycin)
- Reduction in CLas after 4 weeks with Fireline (oxytetracycline)

Greenhouse Plant Assay: Firewall Soil Drench Efficacy

Positive values indicate reductions in CLas titer compared to day 0 in response to Firewall (streptomycin)

Streptomycin in leaf samples

- Plants treated by soil drench
- Leaves sampled day 6
- Concentrations determined from standard curve in ELISA assay

 $**** = P \le 0.0001$

Do antibiotics reduce ACP feeding?

10 adults (mixed age) released onto a artificial diet ring

After 3 days, adults removed filter paper kept under the lid

Petri plate inverted to collect honeydew droplets on filter paper

Filter paper dipped in ninhydrin (1%) for 3 min and dried

Oxytetracycline inhibits ACP feeding

Purple spots quantified

ACP survival in response to bactericides

ACP survival in response to bactericides

ACP survival in response to bactericides

Antimicrobials for reducing pathogen transmission

Current management of psyllids with broad spectrum insecticides is unsustainable

- High cost
- Physiological resistance

Can we manipulate microorganisms present in the vector and host plant to reduce pathogen transmission?

Disruption of symbionts for ACP/CLas management

Knock out endosymbiont to reduce transmission/vector fitness

- Development of FANA and morpholino (PPMO)-EGS technology targeting
 CLas and bacterial symbionts in ACP
- Synthetic molecules that mimic DNA and inhibit bacterial gene expression.
- These engineered molecules can be delivered specifically to target bacteria based on gene sequence, avoiding the problems of effecting nontarget bacteria.

Synthesis of CPP conjugated PMO

RNA-based bactericidal agents: selectively bind to bacterial mRNA

FANA antisense oligonucleotides (FANA)

- High stability
- Stable hybridization with the target mRNA

Peptide conjugated morpholino (PPMO)

- Endonuclease resistant
- Proven track record of limiting bacterial populations

RNA-based bactericidal agents: selectively bind to bacterial mRNA

FANA antisense oligonucleotides (FANA)

Peptide conjugated morpholino (PPMO)

- High stability
- Stable hybridization with the target mRNA

- Endonuclease resistant
- Proven track record of limiting bacterial populations

Penetration of FANA and PPMO in insect cells

Red indicates penetration of oligonucleotides inside cells

FANA fluorophore:
Alexa647
PPMO fluorophore:
Lissamine

Localization of FANA oligo in the alimentary canal of ACP adults

FANA and PPMOs reduce Wolbachia survival in cell culture

FANA applied to citrus through root injection reduces CLas

Negative values represent reduction of Las titer

Summary of antisense efficacy

	FANA	РРМО
Las (Citrus)		
Las (ACP)		
Wolbachia (cell culture)		
Proftella endosymbiont	NA	
ACP Survival		TBD
Transmission	TBD	TBD

Conclusions

- Some reduction of Las titers in response to FireWall and FireLine in greenhouse assays
- Antisense FANAs more effective than streptomycin at reducing Las
- Ingestion of antimicrobials reduces feeding (tetracycline) survival (tetracycline, FANA) of ACP
- Antimicrobial treatments (antibiotics or antisense-RNA technologies) can specifically target Las and microorganisms in ACP

Future Strategies

- Antimicrobials currently available appear to may be effective in reducing ACP populations and CLas transmission
- Targeted antimicrobials likely to be more effective in reducing CLas transmission by ACP
 - Reduces potential for non-target effects
 - Multiple target sites reduce potential for resistance

Thanks!

Andres Sandoval Mojica (UF)

Gustavo Rivas (UF)

Sylvia Bonilla(UF)

Torrence Gill (UF)

Austin McGowan (UF)

Andrew Monalo (UF)

Gennarino Del Bagno (UF)

Wayne Hunter (USDA)

Sidney Altman (Yale University)

Chia-Ching Chu (UF)
Al Handler (USDA)
Evan Braswell (USDA)
Mark Hoffman (NC State)
Calum Russell (UF)
Austin McGowan (UF)
Linhchi Nguyen (UF)
Alex Arp (USDA)

USDA-NIFA Project #2016-70016-24782

United States Department of Agriculture National Institute of Food and Agriculture

