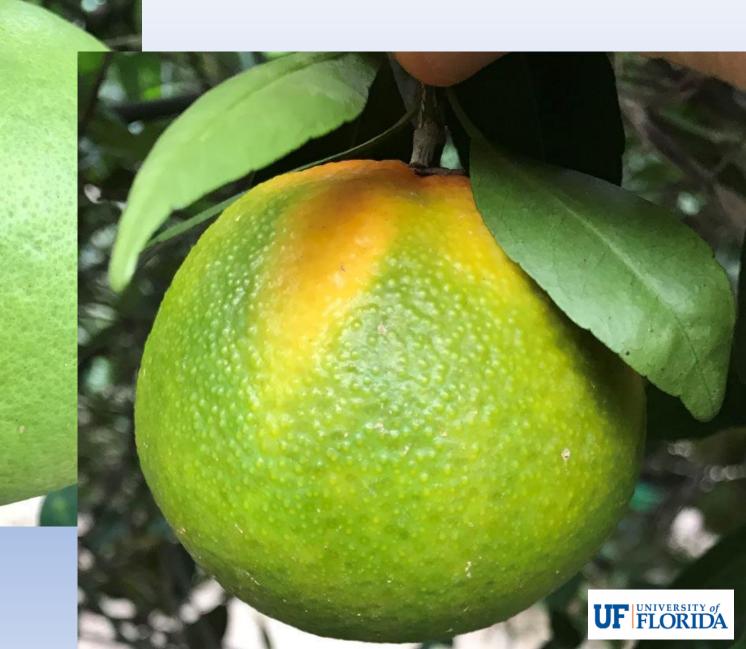
Season-long timing of fertilization to match nutrient demand of citrus trees

Arnold Schumann

Citrus Research and Education Center (CREC), University of Florida

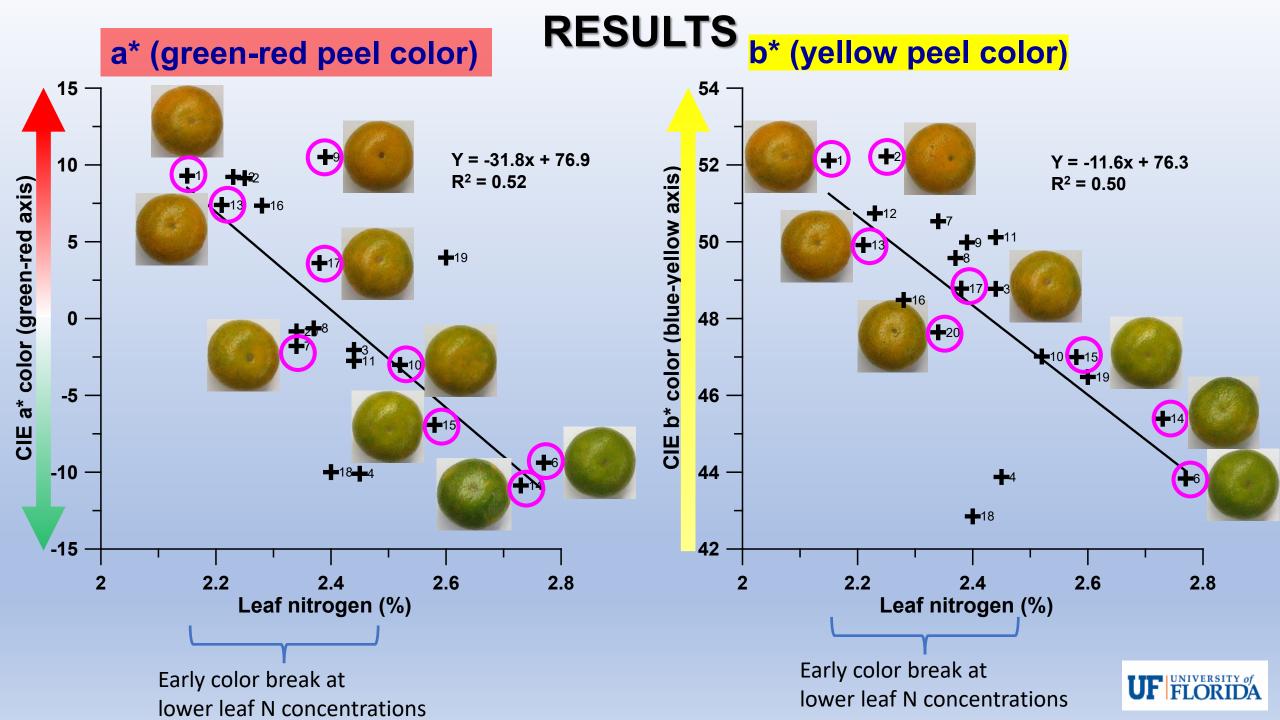
Citrus Irrigation and Nutrient Management Workshop, February 8, 2022 Citrus Under Protective Screen

INTRODUCTION


- For early- and mid-season citrus varieties:
- Fruit color break usually occurs naturally during the Fall season
- Reduced daylength & lower temperatures
- Process: the decline in peel chlorophyll content occurs over several months while carotenoid content increases
- Affected by the environmental conditions, nutrient availability and phytohormones such as ethylene
- Artificial degreening with ethylene of some varieties like W. Murcott is not satisfactory, therefore we are researching other options

Incomplete color break & fruit quality in CUPS: Warm Fall weather in FL? Variety? e.g. W. Murcott

Shading seems to enhance color break


Detrimental effects of excess nutrition on fruit color break and quality: N,P,K : "Nutrition of Florida Citrus Trees" https://edis.ifas.ufl.edu/publication/SS478

- Fruit regreening after late application of N
- The damage occurs in the Fall maturation phase when nutrient levels are too high
- Natural *low* leaf N, P in the Fall may be related to reduced uptake at lower soil temperatures: root growth , hydraulic conductivity
- Can we compensate for warmer Fall temperatures with smart fertilizer timing and improve color break and quality?

METHODS

- On 8 December 2020, 20 Murcott trees in the CREC CUPS were selected to represent a wide range of fruit peel colors in the block (greenest to full orange color; *purposive* sampling)
- Each tree produced paired samples of a) 5 fruit pieces, b) 25 leaves
- Leaves were washed, dried and ground for pooled nutrient analysis
- Fruit pieces were photographed at fixed white balance, AP and the CIE L* a* b* color of the fruit peel was calculated with ImageJ
- Fruit diameters were measured, cut in half, and juice extracted for Brix & acid measurement of the juice, while the peel was dried and ground for nutrient analysis

RESULTS

Pearson's correlation coefficient (r) for peel a* (green-> red color)

	Fruit va	bles	Leaf nutrients				Peel nutrients				
			a*				a*				a*
	Diameter		-0.367		N %	***	-0.723		N %	**	-0.665
	L*		0.333		P %	***	<mark>-0.762</mark>		P %		-0.417
	b*, yellow	***	0.805		K %	**	<mark>-0.630</mark>		K %		-0.343
	Brix %	***	<mark>0.816</mark>		Mg %	*	0.490		Mg %		0.342
	Juice %		-0.059		Ca %		0.353		Ca %	*	0.530
	Acid %		0.308		S %	***	-0.687		S %	*	-0.536
	Ratio	*	<mark>0.538</mark>		B mg/k	g	-0.253		B mg/kg	*	-0.472
	SS /box	*	<mark>0.459</mark>		Zn mg/	kg	0.124		Zn mg/kថ	J	-0.021
					Mn mg/kg		-0.368		Mn mg/k	g	-0.050
*** indicate statistical					Fe mg/	<mark>-0.607</mark>		Fe mg/kg] *	-0.460	
ance at 5%, 1% and 0.1%					Cu mg/	0.107		Cu mg/k	g	-0.142	

RESULTS

Pearson's correlation coefficient (r) for **Brix%**

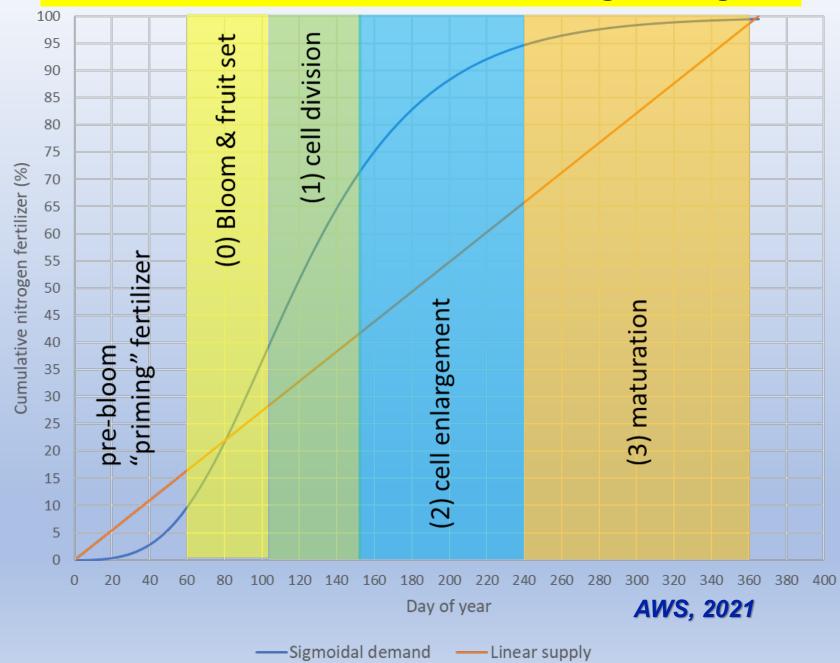
	Fruit variables				Leaf nutrients				Peel nutrients		
			Brix %				Brix %			Brix %	
	Diameter	**	-0.562		N %	**	-0.577		N % *	-0.445	
	L*		-0.075		Ρ%	***	-0.789		P %	-0.392	
	a*, red	***	0.816		K %	**	-0.61		K %	-0.261	
	b*, yellow	*	0.469		Mg %		0.349		Mg % *	0.475	
	Juice %		0.286		Ca %		0.146		Ca %	0.398	
	Acid %	*	0.488		S %	**	-0.658		S %	-0.286	
					B mg/	kg	-0.333		B mg/kg *	-0.458	
					Zn mg	J/kg	0.035		Zn mg/kg	-0.132	
		-	Mn mg/kg		-0.263		Mn mg/kg	0.21			
, *** indicate statistical					Fe mg	J/kg <mark>*</mark>	-0.553		Fe mg/kg*	-0.446	
icance at 5%, 1% and 0.1%					Cumo	g/kg	-0.061		Cu mg/kg	-0.14	

*

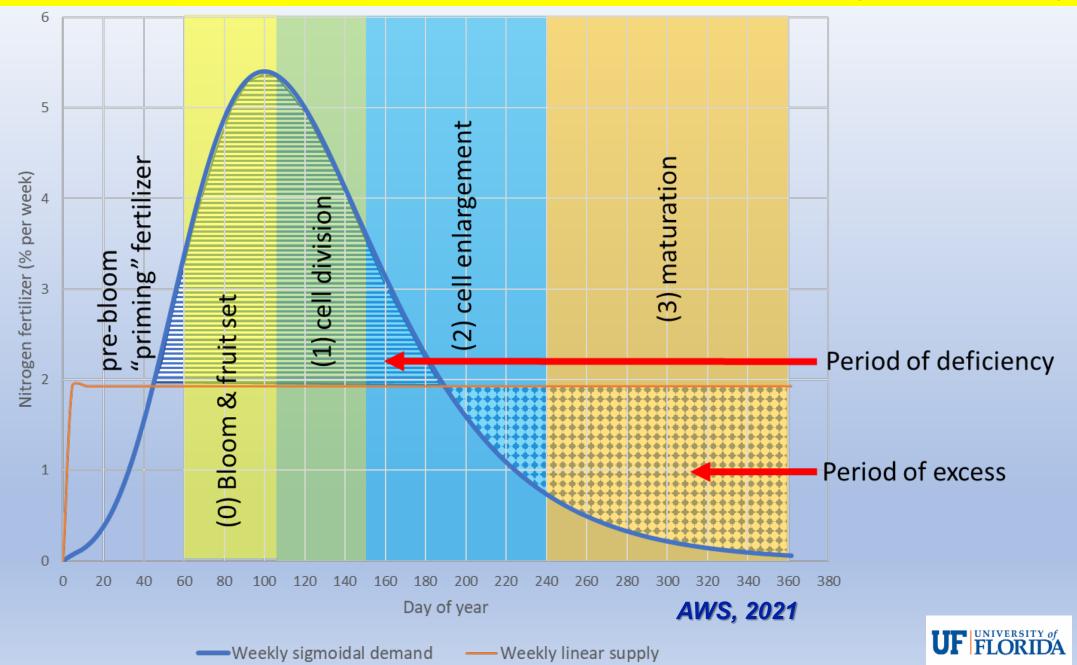
**

Large-scale demonstration in CREC CUPS: 2020/21 season:

- Stopped all N fertilizer on 22 September 2020
- Remaining daily fertigation reduced to 25% of max. to allow depletion of leaf nutrients in the Fall: to low or lower range of optimal.
- Resulted in excellent early color break and Brix quality in all varieties grown in the CUPS; visible symptoms of N deficiency developed
- This was the most successful and practical intervention for improving color break and quality in CUPS fresh fruit


Honey Murcott with full color break on 12/22/2020; notice pale green leaves showing low N status

6 January 2021, post-harvest grapefruit: pale green leaves, yellow veins showing low N status



Correct and incorrect fertilizer timing strategies:

Avoid nutrient deficiencies and excesses which can harm fruit quality and quantity

CONCLUSIONS

- The leaf nutrients N,P,K,S,Fe were negatively correlated with peel color and Brix, suggesting that surplus amounts in the Fall could harm fruit quality and color break
- Leaf Mg was positively correlated with both peel color and Brix, suggesting that a sustained supply of Mg nutrition could support higher Brix and complete color break in the Fall
- Leaf N,P,S -correlations with peel color were strongest. Leaf P correlation with Brix was strongest. Focus on N and P fertilizer timing to ensure best fruit color break and quality

Recommendations*

- Apply most P fertilizer in pre-bloom to post-bloom period. Omit P if leaf and soil levels are high.
- Apply 50% N by post-bloom period.
- Apply 75% N by physiological fruit drop (May/June).
- Apply 100% N by mid to end of summer, depending on the maturity date of the variety.
- Leaf N, P concentrations: aim for high end of optimal in spring to early summer, and low optimal or low in late summer, fall.
- * Parts adapted from "Fruit Size Management Guide", Part 1
- https://www.dpi.nsw.gov.au/data/assets/pdf_file/0005/138830/Fruit-Size-Guide-PART-1.pdf

Acknowledgements

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2018-70016-27387

IFAS Research Florida Agricultural Experiment Station (Mark McLellan, previous Dean for Research)

Contact: schumaw@ufl.edu