

Survival of Diaprepes abbreviatus Larvae on Selected Native and Ornamental Florida Plants

W. J. Schroeder; R. A. Hamlen; J. B. Beavers

The Florida Entomologist, Vol. 62, No. 4. (Dec., 1979), pp. 309-312.

Stable URL:

The Florida Entomologist is currently published by Florida Entomological Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/fes.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

SURVIVAL OF DIAPREPES ABBREVIATUS1 LARVAE ON SELECTED NATIVE AND ORNAMENTAL FLORIDA PLANTS

W. J. Schroeder, R. A. Hamlen², and J. B. Beavers³ U.S. Horticultural Research Laboratory, Agric. Res., Science and Education Admin., USDA, Orlando, FL 32803

ABSTRACT

Of 65 ornamental nursery and 6 native plant species examined during 1976-7 at Plymouth, FL, only 9 species of nursery plants and 1 native plant species other than citrus and sugarcane appeared suitable for the development of larvae of Diaprepes abbreviatus (L.). Transport of infested ornamental plants could convey the weevil within and outside of the regulated area in south and central Florida. Native host species could contribute to local weevil populations in Florida.

Diaprepes abbreviatus (L.) is an important agricultural pest in the West Indies, where it attacks a wide variety of economically important plant species (Martorell 1976). This weevil was first observed attacking citrus in central Florida in 1964; presently it is found in ca. 2000 ha of citrus in that general area. The present study was done in 1976-7 to identify tropical and subtropical plant species growing in Florida that would support the development of the larvae. The test species included ornamental nursery plants produced in Florida for distribution throughout North America and native plant species found adjacent to citrus groves that could be a source of incipient local weevil populations.

MATERIALS AND METHODS

All ornamental tropical foliage and landscape plants were held in 15-cmdiam pots in a medium of 1 part peat and 1 part sand (y/y); potted plants were maintained on raised benches under shade or in a fiberglass-covered screenhouse. There was a minimum of 10 plants/species examined during 1976-7 at Plymouth, FL. Each species was exposed to neonate larvae (September-October) reared from the eggs of field-collected adults at a rate of 100 larvae/pot. In general, from 10 to 50 larvae were placed in a pot on a given day, and additional larvae were introduced over a period of 2 weeks or more. Three months after introduction of larvae, the plants were removed from the pots; the soil was examined for larvae, and the roots were examined for feeding damage. Citrus rootstocks grown in Florida, rough lemon (Citrus limon (L.) Burm. f.), sour orange (C. aurantium (L.)), Carrizo citrange (C. sinensis (L.) Osb. X Poncirus trifoliata Raf.), Milam rough lemon (C. limon (hybr. ?)), and Cleopatra mandarin (C. reticulata Blanco), that are not resistant to damage by D. abbreviatus (Norman et al. 1974) were included as a check for each group of plants.

¹Coleoptera: Gurculionidae. ²University of Florida, IFAS, Agric. Res. Center, Apopka, FL 32703. ³U.S. Hortic. Res. Lab., Orlando, FL 32803.

The following native plants were challenged with more than 10,000 neonate larvae/plant during September-October 1976 in the field: Common persimmon, Diospyros virginiana L.; Chinaberry, Melia azedarach L.; chokecherry, Prunus virginiana L.; laurel oak, Quercus imbricaria Michx.; live oak, Q. virginiana Mill.; and smooth sumac, Rhus glabra L. All larvae were placed adjacent to the main stem. There were 10 plants/species. Plants were removed from the soil and examined for feeding damage 3 months after the last larval introduction. Although D. abbreviatus has a 1-year life cycle, 3 months would be sufficient time for larval development and root damage. No attempt was made to recover larvae. Also, neonate larvae were placed on 6-year-old grapefruit, Citrus paradisi Macf., grafted on rootstock of sour orange for checks; the results are reported as part of another study (Schroeder and Sutton 1977).

RESULTS AND DISCUSSION

The ornamental potted-plant species challenged with neonate larvae were divided into 2 groups: those with >1% larvae recovered and those with <1% larvae recovered (Table 1). The plants classified as hosts, i.e., >1% larvae recovered, were dead or in a state of decline when examined. If there were adequate plant material available, these hosts would probably be suitable for development of D. abbreviatus to the adult stage. Conversely, the few larvae recovered from poor hosts were small; poor hosts probably would not support development to the adult stage. Consequently, infested species listed as hosts could be transported outside of the regulated area; the probability of transporting D. abbreviatus as larvae on poor or nonhost plant species would be less.

TABLE 1. SCIENTIFIC AND COMMON NAMES OF ORNAMENTAL PLANT SPECIES CHALLENGED WITH NEONATE *Diaprepes abbreviatus* LARVAE (100/PLANT) AND PERCENTAGE LARVAE RECOVERED AFTER 3 MONTHS.

Scientific name	Common name	% Larvae recovered
Plants that support larval d	evelopment (>1% lar	vae recovered)
Aloe barbadensis Mill.	Aloe	5.4
Ardisia crenata Sims	Coralberry	11.8
Citrus sp.	Citrus	19.2
Codiaeum variegatum var. pictum (Lodd.) Müll. Arg. Dizygotheca elegantissima (Hort. ex. Vietch)	Croton	1.2
R. Vig. & Guill.	False-aralia	1.1
Hoya carnosa (L.f.) R. Br.	Waxplant	1.2
Juniperus conferta Parl.	Shore juniper	2.4
Juniperus virginiana L.	Red cedar	2.5
Liriope sp.	Lilyturf	1.5
Maranta leuconeura E. Morr.	Prayerplant	9.4
Saccharum officinarum L.	Sugarcane	15.3

Plants that do not support larval development (<1% larvae recovered)

Scientific name	Common name	Scientific name	Common name
Aechmea fasciata (Lindl.) Bak.	Urnplant	Hemerocallis fulva (L.) L.	Day lily
Aglaonema commuta-	Silver ever-	* *************************************	TT'
tum Schott Aphelandra squarrosa Nees 'Dania'	green Zebra plant	*Hibiscus sp. Howeia forsterana (C. Moore & F. J. Muell.) Becc.	Hibiscus Kentia palm
*Araucaria heterophylla (Salisb.) Franco	Norfolk Island pine	Iris sp.	Īris
Asparagus densiflorus (Kunth) Jessop 'Sprengeri'	Sprengeri fern	Ixora sp.	Ixora
Begonia rex Putz. *Brassaia actinophylla Endl.	Rex begonia Schefflera	Ligustrum lucidum Ait. Maranta leuconeura var. erythroneura Bunt.	Privet Redveined prayer- plant
Calathea lancifolia Boom	Calathea	Monstera deliciosa Liebm.	Split-leaf philo-
*Chamaedorea elegans Mart.	Parlor Palm		dendron
Chrysalidocarpus lutescens H. Wendl.	Areca palm	Nephrolepis exaltata (L.) Schott	Swordfern
Cissus rhombifolia Vahl	Grape ivy	*Peperomia obtusifolia (L.) A. Dietr.	Baby rubber- plant
Cordyline terminalis (L.) Kunth	Ti plant	Philodendron scandens subsp. oxycardium (Schott) Bunt.	Heart-leaf philo- dendron
Cordyline terminalis L.) Kunth 'Tricolor'	Tricolor Mada- gascar dragon- tree	Philodendron selloum K. Koch.	Selloum
Crassula argentea Thunb.	Jade plant	Pilea cadierei Gagnep. & Guill.	Aluminum plant
Dieffenbachia X 'Exotica'	Exotic dumb- cane	Pittosporum tobira (Thunb.) Ait.	Japanese pitto- sporum
Dieffenbachia maculata (Lodd.) G. Don	Dumbcane	Podocarpus macrophyllus (Thunb.) D. Don	Japanese yew
Dracaena fragrans (L.) Ker-Gawl. 'Massangeana'	Cornplant	Polyscias balfouriana (Hort. ex Sander) L. H. Bailey 'Marginata'	Variegated Balfour aralia
Dracaena marginata Lam.	Madagascar dragon- tree	Pteris ensiformis Burm. f. 'Victoriae'	Silver-leaf fern
*Dracaena sanderiana Hort. ex Sander ex. M.T. Mast.	Belgian ever- green	*Rhododendron indicum (L.) Sweet	Azalea

TABLE 1. CONTINUED

Scientific name	Common name	Scientific name	Common name
Duranta repens L.	Golden- dewdrop	*Rosa sp.	Rose
Epipremnum aureum (Linden & André) Bunt.	Pothos	Rumohra adiantiformis (G. Forst) Ching	Leatherleaf fern
Episcia cupreata (Hook.) Hanst.	Flame violet	Saintpaulia ionantha H. Wendl.	African violet
*Ficus benjamina L.	Weeping-fig	Sansevieria trifasciata Prain 'Hahnii'	Birds-nest san- sevieria
Ficus etastica Roxb. ex Hornem. 'Decora'	Broad- leaved Indian rubber- plant	*Schlumbergera bridgesii (Lem.) Löfgr.	Christmas cactus
Fittonia verschaffeltii (Lem.) Coëm.	*	Spathiphyllum X 'Mauna Loa'	Mauna Loa peace lilv
Gardenia sp.	Gardenia	Stromanthe amabilis (Linden) E. Moor.	Stromanthe
Gynura procumbens (Lour.) Merrill	Purple- passion vine	Syngonium podophyllum Schott	Nepthytis
Hedera helix L.	English ivy	Vihurnum odoratissimum Ker-Gawl.	Viburnum
		Yucca elephantipes Regel	Spineless yucea

 $^{^{\}circ}$ From 0.1 to 0.5% recovery of Diaprepes larvae for these species; for all other plants no larvae were recovered.

Of the native species challenged with neonate larvae, only common persimmon had root-feeding damage. The 2 species of oak that were tested are the most common tree species other than citrus found in the central Florida weevil area; they had no sign of root feeding.

Citrus rootstock is the primary host tree for *D. abbreviatus* larvae in central Florida. When grown near citrus, persimmon would probably contribute to the weevil population. None of the other tree species examined had larval-feeding damage and, therefore, would not contribute to a weevil infestation.

LITERATURE CITED

MARTORELL, L. F. 1976. Annotated food plant catalog of the insects of Puerto Rico. Dept. Ent., Univ. of P.R., P.R. Agric. Exp. Stn. 303 p. Norman, P. A., A. G. Selhime, and R. A. Sutton. 1974. Feeding damage to five citrus rootstocks by larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae). Fla. Ent. 57: 296.

SCHROEDER, W. J., AND R. A. SUTTON. 1977. Citrus root damage and the spatial distribution of eggs of *Diaprepes abbreviatus*. Fla. Ent. 60: 114.