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ABSTRACT Our goal was to estimate seasonal changes in the proportion of Asian citrus psyllid,
Diaphorina citri Kuwayama (Hemiptera: Psyllidae), carrying Candidatus Liberibacter asiaticus. Our
approach was to test Asian citrus psyllid by using pooled samples. The initial question was about pool
size and the consequences of choosing poorly. Assuming no loss in sensitivity when diluting one
infected individual with many healthy individuals, then it is recommend that a combination of all the
published limits be used: keep the number of pools (n) above 20, the pool size (k) below 100, and
the number of infected pools less than half the total number of pools. The most conservative approach
to achieving the latter is to optimize pool size given an infection rate (p) such that k� ln(0.5)/ln(1 �
p). Exceeding these limits increases the probability that all the pools will be infected. If this occurs,
then that particular sample will be discarded. Use of multiple pool sizes can be used to manage this
risk, but this approach may not always be practical. PooledInfRate is a good program for estimating
prevalence, and it is available for free from the Centers for Disease Control and Prevention (CDC).
The program provides corrected conÞdence intervals for prevalence estimates using one or multiple
pool sizes. We used a randomization test approach as a contrasting methodology. The bias corrected
CDC 95% conÞdence interval is an upper bound to the “true” 95% conÞdence interval, and we provide
an estimate of the magnitude of the remaining bias in the estimate.
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Detecting a rare event or estimating the occurrence of
such an event in a larger population is a problem
encountered in working with disease vectors. The
event may be so rare that thousands of individuals
need to be tested to observe the event, and the cost of
such testing exceeds the available budget and person-
nel. A methodology is required to achieve project
goals within such constraints. The Þrst published ex-
ample of a pooling methodology involved a hypothet-
ical example of trying to detect rare infection in mil-
itary inductees. A signiÞcant cost savings was possible
by Þrst testing a sample created by mixing the blood
from several people. If a sample tested positive, then
the blood from all individuals in that pool would be
retested (Dorfman 1943). This is usually referred to as
“group testing” or Dorfman type testing, where the
goal is to identify an infected individual. A related
problem is to estimate the proportion of individuals
that are positive. The strategy has been called “pool-
ing” when applied to estimating a proportion (Hep-
worth 1999, 2004). This application was proposed
thrice in the 1960s (Gibbs and Gower 1960, Chiang
and Reeves 1962, Thompson 1962) and was used ex-
tensively in insect vector research. Some recent ex-
amples include beet leafhopper, Circulifer tenellus

(Baker), transmitting a phytoplasma (Crosslin et al.
2005); potato purple top phytoplasma transmitted by
leafhoppers (Munyaneza et al. 2007); black ßy vector
of onchocerciasis in West Africa (Yameogo et al.
1999); psyllid vector of phytoplasmas (Carraro et al.
2004, Garcia-Chapa et al. 2005); and mosquitoes vec-
toring a viral pathogen in deer (Andreadis et al. 2008).
The technique also was used in medicine (Novack et
al. 2008), animal health (Rovira et al. 2008), Þsheries
(Wallace et al. 2008), plant health (Geng et al. 1983,
Coutts et al. 2009), and DNA mapping (Chi et al.
2009).

In practice, pooling is a simple process. If 30,000
mosquitoes are collected from the Þeld, they could be
tested one at a time for a viral pathogen. If each test
takes 10 min and costs US$15, then this project will
take 5,000 h and cost US$450,000. A shorter approach
would be to smash 10 mosquitoes together and test this
pooled sample. This approach would take 500 h and
cost US$45,000. Even greater savings are achieved
with larger pool sizes. However, there is an obvious
problem. If two individuals are infected and pool size
is 15,000, with one infected individual per pool, then
one might conclude that all individuals were infected
because both pools tested positive. Work backwards:
three infected individuals and a pool size of 10,000; 10
infected individuals and a pool size of 3,000; and so1 Corresponding author, e-mail: tebert@uß.edu.
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forth. The conclusion is that one always overestimates
the true infection rate whenever all the pooled sam-
ples test positive and that this is true for any pool size.
It is also the case that for any pool size and any nonzero
infection rate there will be a nonzero probability that
all the pools will be infected. So, there are beneÞts and
risks to the pooling methodology.

Our interest in this methodology stems from a prob-
lem in estimating seasonal changes in the proportion
of Asian citrus psyllid, Diaphorina citri Kuwayama
(Hemiptera: Psyllidae), carrying Candidatus Liberi-
bacter asiaticus, the putative causal agent of Huan-
glongbing disease (HLB). For management purposes,
an estimate of monthly Liberibacter asiaticus preva-
lence in Asian citrus psyllid was needed, but preva-
lence was very low. Consequently, sample size ex-
ceeded our resources. We Þrst encountered pooling
methodology as a footnote to a table in a paper on
leafhopper transmission of maize chlorotic dwarf virus
(Hunt et al. 1988) but later discovered that the basic
approach was already published (Gibbs and Gower
1960, Chiang and Reeves 1962, Thompson 1962, Hauck
1991). Deriving the equations requires a basic under-
standing of probability, permutations, and combina-
tions (Loyer 1983, Ross 1984) (see Appendix).

Many methods for analysis of pooled samples have
been proposed. The most basic is the minimum infec-
tion level (�minimum infection rate, � minimum
Þeld infection rate) where one assumes that a positive
pool is infected by a single individual and the infection
rate is the number of positive pools divided by the total
number of individuals tested (Orshan et al. 2008, Vitek
et al. 2008). This is an easily applied method, but the
assumption that each pool has only one positive can-
not usually be proven. At low infection rates and small
pool sizes, the probability that a pool has multiple
positive individuals may be small, but the deÞnition of
“low” and “small” may differ between scientists, and
the imprecision of this approach is not warranted.
Better alternatives are the exact methods (Walter et
al. 1980, Swallow 1985) or a slightly better approach
(Burrows 1987). There are also asymptotic approxi-
mation methods. Some based on the Fisher Informa-
tion statistic (Kline et al. 1989), a Logit function (Hep-
worth 1999), a complimentary log-log function as part
of a generalized linear model (Farrington 1992), or by
using moments (Bondell et al. 2007). These methods

have been extended to include dealing with estimating
prevalence with pools of different size (Walter et al.
1980, Hepworth 1999, Biggerstaff 2008, Hepworth and
Watson 2009). These studies and studies cited therein
developed estimates for conÞdence intervals. Com-
plications arise if one has error in detecting the patho-
gen either due to dilution of an infected individual with
many healthy individuals or errors in the assay technique
(Tu et al. 1995). A very useful program that gives point
estimates and conÞdence intervals is at http://www.
cdc.gov/ncidod/dvbid/westnile/software.htm (Bigger-
staff 2006).

One of the primary concerns in using these methods
is in choosing the pooling size (k). Increasing pool size
can decrease the cost of testing thousands of individ-
uals, and pooling may improve accuracy if there is
error in detecting the pathogen (Tu et al. 1995). How-
ever, pooling degrades the quality of the estimate, and
if all pools are infected then the estimated infection
rate is 100%. Obviously, one does not plan an exper-
iment with this as the likely outcome, but Þeld results
are variable. It is possible that the base infection rate
is 1%, but that one in 50 samples will have 10% of the
individuals infected. Thus, a few samples may have the
majority of pools testing positive. Even with good
preliminary data, the optimal pool sizes that have been
proposed leave a risk of having all pools infected (Ta-
ble 1). The probability that all pools are infected is
[1 � (1 � p)k]n,with n pools of size k and an infection
rate p (Sterne 1934). It should be noted that all studies
mentioned in Table 1 modiÞed their recommenda-
tions for optimal pool size. Thompson (1962) recom-
mended using a pool size smaller than the optimal
value by using his equation (Table 1) but did not
provide a numerical value for “smaller.” Chaing and
Reeves (1962) put an upper limit of k� 100. Burrows
(1987) put a lower bound to the number of pools at 20.

One of the “risks” in pooling is the case when all
pools test positive. With ten pools of size ten it is
possible that one individual in each pool could be
positive and therefore a 10% infection rate in the
population results in an estimated 100% infection rate
of the sample. Ideally, this never happens, but with
pooling there is always the risk that it will happen. If
this happens the outcome from that sample is typically
ignored, and so for that sample one has wasted the
time and resources expended in processing the sam-

Table 1. Probability of all pools being infected given optimal pool sizes as estimated by various studies

No. pools

Chaing and Reeves (1962)a Thompson (1962) Burrows (1987)

k �

Loge�1

2
�

Loge�1 � p�

k �
1.5936 � p

p
k�

�1.44

Loge�1 � p�

p � 0.001 p � 0.100 p � 0.001 p � 0.100 p � 0.001 p � 0.100

5 7.8E-6 0.039 0.321 0.312 N.A. N.A.
10 6.1E-11 0.002 0.103 0.097 N.A. N.A.
20 3.7E-21 2.2E-6 0.011 0.009 0.005 0.005
40 1.4E-41 5.0E-12 1.0E-4 8.9E-5 2.0E-5 2.1E-5

Number of individuals in a pool is k, and p is the true prevalence.
a The formula used by different authors for selecting optimal k is shown for reference.
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ple. If one discards any result where all the pools are
infected, then one might consider adjusting conÞ-
dence intervals to account for this practice Ð essen-
tially treating this case as a source of bias in an esti-
mated conÞdence interval. We disagree with this
approach and therefore decided to try a different
technique to gain a better understanding of the bias in
the estimated conÞdence intervals for estimated prev-
alence rates from pooled samples.

TheÞrst goalof this researchwas tooutline thebasic
approach in the analysis of pooled samples. The meth-
odology is essentially discrete, and it is possible to
enumerate all possible outcomes for small sample
sizes. Thus, the second goal is to enumerate all possible
outcomes for speciÞc cases to better understand the
limitations of this approach. Finally, virtual popula-
tions are used to test the quality of 95% conÞdence
limits (CL) by using the Centers for Disease Control
and Prevention (CDC) program compared with a
unique application of a randomization method. Our
approach is graphically oriented rather than develop-
ing more equations, but we need to start with the basic
equations.

Methods

Equations (an Exact Method). The basic approach
assumes that the probability that any given individual
is infected is independent of the infection status of all
other individuals, and the probability of infection is
the same for all individuals within the sample (inde-
pendent and identically distributed, or IID). In many
cases, this is a poor assumption based on the biology
of the system being studied. However, the assumption
can be satisÞed using sampling methods that random-
ize the infected individuals with the sampled popula-
tion (Hepworth 1996). Given that this assumption is
true, the exact estimate for the infection rate is cal-
culated based on the following equations (Thompson
1962).

Let p � proportion of the population testing posi-
tive. In standard statistical notation, characters with a
circumßex (“ ˆ ”) symbol represent estimates of true
values. Thus, p̂ is an estimate of p, and likewise for
other variables.
N � number of individuals;
n � number of pools;
k� number of individuals per pool, or pool size; and
� is the probability that a pool is infected, and thus

�̂ � 1 � �
i� 1

n
Xi

n
[1]

where Xi is coded one for healthy and 0 for infected.
The probability of a pool not being infected is the

probability that none of the individuals are infected to
the power of the numbers of individuals in a pool. So,
the number of uninfected pools is (1 � p)k, where p
is unknown and k is the number of individuals in a
pool. However, we measure the number of uninfected
pools as

�
i� 1

n
Xi

n
.

Equating these two equations gives

�
i� 1

n
Xi

n
� �1 � p�k or p̂ � 1 � � �

i� 1

n
Xi

n �
1

k

[2]

The expected value for the infection rate is there-
fore

E� p̂� � 1 � E�� �
i� 1

n
Xi

n �
1

k

�
The expected value for this equation is the fraction

of healthy individuals multiplied by the number of
ways of ordering infected and healthy individuals mul-
tiplied by the probability of getting i healthy individ-
uals in n pools. This can be written as

E� p̂� � 1 � �
i� 0

n � in�
1

k�ni�
� ��1 � p�k�i �1 � �1 � p�k�n� i [3]

There is a well known bias in the estimator of p
(Gibbs and Gower 1960, Thompson 1962, Hepworth
and Watson 2009), and methods have been developed
to correct this bias (Hepworth 2005, Biggerstaff 2008,
Hepworth and Watson 2009).
Virtual Population.No biological data were used in

this effort. Using biological data would complicate the
presentation and results. In biological data, one can
only estimate the true prevalence of a disease. Sam-
pling errors and error in the testing procedures can
skew and distort the prevalence estimate. Such issues
are of great importance in understanding biological
data. However, we need to understand the simple case
Þrst and then build a foundation for evaluating the
effects of sampling and testing issues.

The Þgures were all produced either by enumerat-
ing all possible outcomes from the method, or by using
a computer to generate a virtual population. With a
virtual population, we can select the true infection
rate in the population; therefore, we are always testing
a population with a known predeÞned infection rate.
In any sampling methodology (virtual or real), we
hope that our sample is representative of the entire
population. A sample of 6,000 random individuals
might have a mean body weight of 1 g with a SD of
0.5 g. However, if another sample of 6,000 were taken,
it might have a mean of 1.01 g and a SD of 0.59 g. If
another sample were taken, it, too, would be a little
different from the others. The notation for 600 of these
samples would set size (S) of 600 withN� 6,000. One
then calculates a SD for S to describe the reliability of
the methodology in testing a population. Thus, there
are S� 600 sets ofN� 6,000 pooled into n� 600 pools
of k� 10 individuals. The analysis of the pools is used
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to estimate prevalence and get conÞdence intervals,
but the analysis of sets is used to test the methodology.

We created virtual populations of 6,000 individuals
and Þxed speciÞc infection rates within these popu-
lations. We created these populations as a column of
random numbers in an Excel spreadsheet using the
following methodology. The Þrst cell in our Excel
spreadsheet was A1 (Table 2). Column A had a ran-
dom population created using a random number gen-
erator, and we Þlled cells A2:A6001 with this function.
The true infection rate (p) was put into cell B1 (0.15
in Table 2). We then Þlled all cells B2:B6001 with a one
if the corresponding cell in A2:A6001 was less than B1.
Column C has positive integers 1 through 6,000. Cell
D1 has the pool size. The remaining cells in D sample
B and if any individual (A) was positive (B) the pool
(D) is positive (Table 2). We edited the end of each
column to make sure that we did not have any partly
Þlled pools (e.g., k� 17, n� 6,000/17 � 352.9, so the
Þnal sample had 16 individuals and was deleted before
proceeding). This gave us bounds of k � 71, n � 90,
which were within the limits described for Table 1
(k � 100, n � 20).

We used the CDC methodology to calculate prev-
alence rates, and a 95% conÞdence interval. To con-
trast with this approach, we used a randomization
technique to calculate a 95% conÞdence interval
(Ebert et al. 1998).
Randomization Approach. To contrast with the

CDC approach, we designed an alternative method-
ology for calculating conÞdence intervals. There are
too many possible combinations of infection rates,
pool sizes, and numbers of pools. For our application,
an infection rate �0.5% is essentially zero because it
is impractical to process sufÞcient samples to improve
our resolution of the infection rate. In this exercise, we
chose a lower infection rate because we need to make
sure that our results here are applicable to our data. So,
we selected a minimum infection rate of 0.1% and a
pool size of 20 (k� 20). We then estimated prevalence
at progressively increasing true prevalence rates until
there was no further change in the response. In this
case thatwasp�42.1%.Weused the followingprocess
for each prevalence level from 0.001 through 0.421.

1. Create a virtual population of 6,000 individuals, and
group in pools of 20 (k � 20).

2. Use equation 2 to calculate prevalence.
3. Repeat 1,000 times.
4. Use the CDC approach to get a conÞdence interval

about each of these 1,000 prevalence estimates.
5. Use a randomization test to create a similar con-

Þdence interval.

a. Take the 1,000 repeats in step 3, and take sets of
observations. With a set size of four, one would
take the Þrst four observations and process
them as outlined below, then take the next four
observations and process them, and then the
next four, and so forth. Then, one does the same
process with Þve, six, . . . through a set size of 10.

b. For each set, run a randomization test to get a
95% conÞdence interval about each set. Fol-
lowing the approach by Ebert et al. 1998, take
a set of Þve numbers designated ABCDE, make
a new set of AABBCCDDEE, randomize it and
break it into two parts. One outcome might be
AABDE and BCCDE. Sum the numbers in each
set, and take the absolute value of the differ-
ence. Do this 10,000 times and sort in ascending
order. The 9,750th observation when added and
subtracted from the mean will be the two-tailed
95% conÞdence interval.

c. This process was done at least 30 times for each
set size. We stopped when the resolution in the
graphics used in this manuscript was insufÞ-
cient to show the change caused by the addition
of more data.

d. Set sizes of two and three have so few possible
outcomes that we used the maximum possible
difference, and processed all 1,000 of the re-
peats from step 3.

6. We expected that increasing set size would de-
crease the conÞdence interval. Using linear regres-
sion, we could model the rate of decrease and
extrapolate to a set size of 1.

7. Contrast the outcome of step 4 with that in step 6.

Additional Information. These methods used dis-
crete mathematics and are therefore discontinuous
functions. One can collect one or two individuals but
not 1.5 individuals. A sample of ten individuals with
pool size three would have three pools and the re-
maining individual could be discarded. One might
consider two pools of three and four pools of one
individual, but this is not equivalent to having a pool
size of 1.67. There is considerable value to using pools
of different size, but this adds another level of com-
plexity that we prefer to avoid at this time.

Because the number of individuals and pool size are
integer, the outcomes from the CDC method or using
equation 3 are discrete. For any number of individuals
(N) divided into k groups, there will be prevalence
estimates that are numerically impossible to achieve.
All Þgures plot discontinuous outcomes regardless of
the method of presentation.

Table 2. An Excel spreadsheet with cell elements used to create a virtual population (column A), identify infected individuals at an
infection rate of 15% (column B), and pool it with a pool size of 5 (column D)

A B C D

1 0.15 5
2 � rand() � if(a2�$b$1,1,0) 1 � if(mod($c2,$d$1) � 1,if(sum($b2:$b6)�0.5,1,0),””)
3 � rand() � if(a3�$b$1,1,0) 2 � if(mod($c3,$d$1) � 1,if(sum($b3:$b7)�0.5,1,0),””)
4 � rand() � if(a4�$b$1,1,0) 3 � if(mod($c4,$d$1) � 1,if(sum($b4:$b8)�0.5,1,0),””)
. . . . . . . . . . . . . . .
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In producing the Þgures, set size was not predeter-
mined. Initial set size was between 50 and 100. How-
ever, it was difÞcult to see a pattern in the outcomes
based on such small set sizes. Doubling set size made
the Þgures clearer, but only relative to the previous
graphs. In a Þgure such as Fig. 5, S� 400 because the
resulting pattern was clear. There was a peak for each
value of p and that peak changed as p interacts with k.
Irregularities such as those between k� 55 and 65 for
p � 0.15 were unimportant. In a Þgure such as Fig. 4,
S needed to be larger to clearly show where peak
variability occurs. As S increases, the curves all be-
come more regular, but it takes more time to generate
and process the data.

Using these methods, we examined the limits to
using pooled samples especially at critical limits to the
method such as the difference in estimated prevalence
when all but one pool tests positive versus when all
pools test positive. We then suggest some additional
guidelines when trying to choose an optimal pool size.
We Þnish by contrasting the conÞdence interval es-
timated using an asymptotic method as implemented
in the program published by the CDC against an
equivalent interval estimated using a randomization
approach. The randomization approach coupled with
linear regression avoids the bias inherent in the stan-
dard equations estimating the variance in prevalence
calculated using pooled samples. We used multiple
sets for the randomization procedure, but the goal was
to estimate the conÞdence interval expected with only
one sample. A regression analysis was used to estimate
this case and give a 95% conÞdence interval.

Results and Discussion

100% Positive. Given any sample from an infected
population, there is always a nonzero probability that
all the pools will be infected. We calculated this prob-
ability for Þxed number of pools (n) with pool size
based on the equations by the three sets of studies
(referred to by author name[s]): Chaing and Reeves
(1962),Thompson(1962), andBurrows(1987)(Table
1). These equations estimate k as a real number, but in
practice k is integer. Converting from real to integer
causes a sawtoothed pattern in the estimated proba-
bility of having all pools infected (Fig. 1). For any
prevalence, the optimal k by Chaing and Reeves
(1962) gives the lowest probability that all pools are
infected, and the order is always Chaing and
Reeves �� Burrows � Thompson (Fig. 1A). The prob-
ability of getting all pools positive decreases with an
increasing number of pools (Fig. 1B and 1C). How-
ever, even for the more conservative Chaing and
Reeves method there may be a fair chance of having
all pools positive with a small number of pools (Fig.
1C). From these observations, we recommended at
least 20 pools for each sample. Under these conditions,
the equation for optimal pool size proposed by Chaing
and Reeves (1962) will keep the risk of all pools testing
positive at �1%.
EnumeratingOutcomes. Ifprocessedas individuals,

a sample with N � 1 infected individuals has a prev-

alence of 1 � (1/N). Each additional uninfected in-
dividual will decrease the estimated prevalence by
1/N. However, the relationship between number in-
fected and estimated prevalence was not linear in
pooled samples (k� 1), and the relationship departed
from linearity more quickly as pool size increased
(Fig. 2). With k� 1, there was a proportional change
in prevalence for each additional tested individual.
However, in pooled samples the addition of another
infected pool does not increase prevalence by a Þxed
proportion. Each additional infected pool increases
the estimated prevalence a little more than what it was
increased by the addition of the previous infected pool
(Fig. 2). Thus, the probability of getting (p̂) � p is
greater than getting (p̂) � p, and the difference in
probability between getting (p̂) � p versus (p̂) � p
increases with increasing p. Therefore, there will be a

Fig. 1. Probability of all pools being infected given prev-
alence ranges from 0 to 0.5 in increments of 0.004. (A) Pool
size (k) changes based on the optimal k as calculated by the
three different authors with the equations given in Table 1.
(B) Optimal pool size based on equation by Thompson for 5,
10, and 20 pools. (C) Optimal pool size based on the equation
by Chaing and Reeves (see Table 1) changes for 5 or 10 pools.
The sawtoothed pattern is caused by converting the esti-
mated k from the equation into an integer value.
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greater chance that a sample underestimates the true
prevalence rather than over estimates it. This causes
repeated prevalence estimates to be skewed and also
results in a small group of outliers that are separated
from the bulk of the estimates. Finally, there is a
relatively large gap in estimated prevalence between
all pools infected and all but one pool infected, and the
sizeof this gap increases as thepool size increases(Fig.
2). Thus, if one tries to estimate a true prevalence of
60% by using 100 individuals and a pool size of two, it
is likely that the estimate will be close. However, with
k� 5 the methodology will result in either (p̂) � 100%
or (p̂) � 0%. This is a degradation in the quality of the
prevalence estimate associated with the pooling meth-
odology.

How do sample size and pool size interact in de-
termining the prevalence estimate given that n � 1
pools are infected? Plotting three pool sizes using up
to 4,096 individuals we noted that increasing the num-
ber of pools reduces the gap in estimated prevalence
between n� 1 and npools infected (Fig. 3). However,
decreasing pool size reduces the size of this gap much
more than increasing sample size (increasing the num-
ber of pools). Thus, if given a choice between col-
lecting more samples at Þxed pool size versus using the
existing sample and reducing k, it is clear that reducing
pool size has a greater effect on the maximum possible
estimated prevalence.
Mapping � to p. This section is mostly about Fig. 4,

which was created using a set size (S) of 600 repeti-
tions of each different pool size (k � 5, 10, 20). Each
repetition used 6,000 individuals, so it took 10.8 million
individuals to generate the entire Þgure. The standard
deviation is the variability within each set, and not the
variability inN.Every increase in pool size (k) caused
a shift to the left in the curves in these graphs. Thus,
the curve for average p for k� 5 is a fairly straight line.
At a pool size of 10, there was a marked increase in
variability in estimated prevalence at higher preva-

lence levels, and at k � 20 this variability had a peak
and subsequent decline. Similar plots with even larger
pool sizes showed a shift left in all the graphs along
with a steeper transition from 0 to 100%.

In situations without pooling (k� 1), variability in
the percentage of infected individuals equals the vari-
ability in the percentage of infected pools. Pooling
decouples this relationship as shown in Fig. 4, where
the curve for the standard deviation of p̂ (left column)
differs from that of �̂ (right column). One way to think
of pooling is as a doseÐresponse relationship where
pool size is dose (e.g., “average” and “infected pools/n”
[Fig. 4, k � 20]). As with any doseÐresponse type
relationship, variability is greatest at the 50% response
level. As expected, the peak variability in the number
of infected pools occurs when half the pools are in-
fected (Fig. 4, �), and the maximum variability in the
estimated prevalence rate occurs when half the time
all the pools are positive (Fig. 4, k � 20).

Increasing the pool size increases the sharpness of
the peaks in estimated standard deviation. Peak height
decreases with increasing prevalence, and the peak
keeps shifting to the left (Fig. 5). The rapid increase
in standard deviation starts when sometimes all the
pools are infected. At this point, there is also a cor-
responding increase in rate of change in the estimated
prevalence (Fig. 6). We note that this mark is well to
the left of the point where the probability that all pools
are infected has much inßuence on estimated preva-
lence. This gives a margin of safetyÑwhere the
method will continue to work even if there is an
unusual sample with many times the typical infection
rate. In this study, this safety margin remained pro-
portionately constant at 	6.2 times the optimal esti-
mated pool size based on the equation by Chaing and
Reeves (1962).

The reason for limiting pool size to 100 is shown in
Fig. 6. The shape of each plot in Fig. 6 is driven by the
probability of getting a sample where all pools test
positive. The probability of having all pools test pos-
itive is a function of pool size and prevalence. Thus,
the Þgure can be used to visualize the outcome of

Fig. 2. Estimated prevalence for 100 individuals given
pool sizes (k) 2, 4, 5, 10, and 20. ForN� 100, k� 4, there are
25 pools. The graph plots prevalence if 1, 2, 3, . . . 25 of the
pools are positive. For each k, the graph plots all possible
outcomes givenN� 100. Pushpins on the x-axis mark optimal
p for each pool size as calculated using Chaing and Reeves
(1962) equation solved for p. The diagonal line plots the
outcome if one does not use pooling.

Fig. 3. The gap in prevalence estimates between n and
n� 1 infected pools for different pool sizes (k) and different
number of pools (n). If n pools are infected, the estimated
prevalence will be 100%. Diagonal line connects points with
equal number of individuals (N).
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testing Þxed pool sizes over a range of infection rates.
As pool size increases, the prevalence range over
which the method is useful decreases. Although the
limit is a bit arbitrary, it provides a numerical value to
a more general recommendation to keep pool size as
small as possible if one lacks preliminary data sufÞ-
cient to justify a more precise numerical answer.
Confidence Interval Estimates. How does pooling

affect the 95% conÞdence interval estimate for p? The
average conÞdence interval using the CDC approach
provides the expected increase in conÞdence interval
with an increase in prevalence given a Þxed pool size
(Fig. 7). A part of the increase in the interval width
occurs because of the processes already discussed.
Furthermore, the sample size decreased with increas-
ing prevalence because samples were discarded when
all pools were infected, and this occurs more fre-
quently as prevalence increased.

In contrast to the gradual widening of the conÞ-
dence interval in the CDC approach (Fig. 7), the
conÞdence interval width using the randomization
method increased slowly with increasing prevalence
so long as true prevalence was below 	0.17 (Fig. 8).
It then increased rapidly up until half the time all pools
were infected, at which point the interval declined
until near zero because at that point it was almost
certain that all pools were infected.

At set sizes of two or three, the conÞdence interval
width was low relative to the set size of four, Þve and
six (Fig. 8B). As set sizes of two or three, the number
of sets required to observe rare events is so large that
the rare events have less effect on the overall result.
Within the range 0.001Ð0.17, the response was greatest

Fig. 4. Mapping the estimated prevalence (p), standard deviation in the estimated prevalence, fraction of infected pools
(�), and the SD in the fraction of infected pools using equation 3 at true prevalence ranging from 0.001 to 0.421 in increments
of 0.004 with pool sizes (k) of 5, 10, and 20. For p at k� 20, we include a line plot of the probability that all pools are infected.
Pushpins mark optimal p for each pool size as calculated using the Chaing and Reeves (1962) equation solved for p. S � 600.

Fig. 5. Effect of pool size on the SD in estimated prev-
alence at several true prevalence values. There is a critical
pool size beyond which the standard deviation increases
rapidly.

Fig. 6. Effect of pool size on estimated prevalence at
different true prevalence rates. The values are the average of
a set of 400. The pins on each line mark the point where half
the pools are infected. The estimated prevalence starts in-
ßating when one or more of the 400 sets has all pools infected.
Pushpins mark optimal pool size as estimated using the equa-
tion by Chaing and Reeves (1962).
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at set size of four, and declined thereafter (Fig. 8).
Because the proposed limits for optimal pool size
would not allow for k � 20 at p � 0.17, we used this
limit in regression analyses. All regression equations
for estimating the conÞdence interval width went
from four to ten, and extrapolated back to a sample
size of one. This approach always yielded a conÞ-
dence interval that was smaller than that produced
by the CDC methodology (Fig. 9). On average the
regression approach had a conÞdence interval width
24% smaller than the CDC method. The upper 95%

conÞdence interval estimate from the randomiza-
tion approach was 12% smaller than that from the
CDC method.

There is one Þnal issue that is more about sample
size rather than pooling methodology. In pooling we
were concerned with the probability that all the pools
were positive, and for any sample size where Np � n
there was a nonzero probability that all pools would be
infected. At the other extreme, there is a nonzero
probability that for any sample size and p � 0, that
none of the individuals will be positive. So, at an
infection rate of 0.1% there is a (1 � 0.001)6,000 � 0.2%
probability that none of the 6,000 individuals in our
virtual population would be infected. We can use this
approach to select a required sample size. For exam-
ple: We need to set a quarantine area to prevent
further spread of a pathogen. A red area has high
prevalence, yellow areas are where the pathogen in
invading, and green areas are clean. However, we
know that “clean” only means below detection levels.
So we decide that infection rates below 0.5% are green
areas. If we collect 600 individuals, there is still a 5%
chance that we will miss an infection at the 0.005
prevalence level (Table 3). The task becomes more
difÞcult if there are regulatory differences between
green, yellow, and red. If yellow is between 0.005 and
0.01 prevalence, we need to decide how accurately we

Fig. 7. Average and average 95% conÞdence interval
for the CDC method run on 1,000 sets of 6,000 individuals
tested using pool size of 20 individuals. The maximum and
minimum estimates within those 1,000 sets also are shown.
The push pin in the x-axis is where one half the pools are
infected. Pushpin marks optimal prevalence for pool size
of 20, as calculated using the Chaing and Reeves (1962)
equation solved for p.

Fig. 8. (A) The 95% conÞdence interval width for prev-
alence estimates using equation 3 with set sizes (S) from two
to eight. (B) Point estimates at different Set sizes for true
prevalence rates of 0.049 and 0.101. The diagonal line is a
regression line pointing to one set because that is the out-
come we are estimating. The point estimates are the result of
averaging 30 to 60 sets.

Fig. 9. Contrast in the width of the 95% conÞdence in-
terval for the CDC method versus the randomization-regres-
sion method. The expected value for the randomization
method is plotted as well as the upper 95% conÞdence in-
terval for the randomization.

Table 3. Probability of failing to find any infected individuals
given specific sample sizes at a prevalence of 0.5%, and the upper
95% confidence limit to estimating a true prevalence of 0.005
without pooling given that no infected individuals were recovered

Sample size Probability of zero CDC upper 95% CI

100 0.605770 0.03699
200 0.366958 0.01885
300 0.222292 0.01264
400 0.134658 0.00951
500 0.081572 0.00762
600 0.049414 0.00636
700 0.029933 0.00546
800 0.018133 0.00478
900 0.010984 0.00425

1,000 0.006654 0.00383
2,000 0.000044 0.00192
3,000 0.0000003 0.00128
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need to deÞne the borders. At a sample size of 800, the
upper 95% conÞdence interval no longer includes the
0.5% threshold for green status if no infected individ-
uals are recovered. If eight infected individuals are
recovered, the estimated infection rate for 3,000 in-
dividuals is 0.27%, with an upper 95% conÞdence level
of 0.5%Ñjust barely in the green zone given rounding
error (actual value, 0.504%). If we now process these
3,000 samplesusingpoolingmethods,wewill getwider
conÞdence intervals and our green zone sample might
be reclassiÞed as yellow.

We are all concerned with what deÞnes “large”
sample sizes. In college Statistics 101, there were t-
distribution tables where “inÞnite” was at a sample size
of 121 or greater. A sample size of 10 or so would be
a large number of replicates in Þeld pesticide efÞcacy
trials. However, in estimating prevalence the deÞni-
tion of “large sample size” is dependent on the lowest
prevalence of interest. For a given application, even a
sample size of 3,000 may still be too small. We had
these cautions in mind when we chose a sample size
of N � 6,000.

Pooling is a powerful tool for detection of rare
events given limited time and funding. However, it is
important to collect a sufÞcient sample size to make
detection of the event probable. In processing the
sample one must make a choice about pool size. Too
small a pool size will expend additional resources, but
that is preferable to having pools too large. Several
authors have recommended different criteria for se-
lecting pool size. We suggest that all are used because
in combination they minimize the risk of having all
pools test positive. The recommended limits are to
have the number of pools (n) �20, pool size (k) �100,
and fewer than half the number of pools testing pos-
itive. Within these limits, we recommend using the
formula by Chaing and Reeves (1962) because it pro-
vides the most conservative optimal pool size. Infor-
mation on bioassay sensitivity and biological variabil-
ity could be used to modify these limits. Data from
pooled samples can be analyzed using a program avail-
able through the CDC. The CDC program calculates
conÞdence intervals that will facilitate reader inter-
pretation of Þgures. The bias in estimating these con-
Þdence intervals means that the CDC program calcu-
lates an interval width at least 11% wider than
necessary when there was a single pool size, and large
sample size (N). However, the conÞdence intervals
calculated by the CDC program should still be used
until something better is developed.
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Appendix

Basic Probability

1. Probabilities range from 0 to 1, where 0 indicates an
event will never happen and one indicates the
event will always happen.

2. The sum of the probabilities of all possible out-
comes must total exactly 1.

3. The probability that multiple independent events
will occur is the product of the individual proba-
bilities.

A coin has two sides, heads and tails. Toss a fair
coin into the air and half the time it will land heads,
so the probability of getting heads is 0.5 for one toss.
There are only two outcomes, and the probability of
getting heads plus the probability of not getting
heads is 0.5 
 0.5 � 1. The probability of getting
three heads in a row is the product of the individual
probabilities, or 0.53 � 0.125. We check this answer
by listing all possibilities. There are two possible
outcomes for each toss of the coin. So there are two
outcomes for the Þrst toss, then two outcomes for
the second toss, and two more for the third. Thus,
there are 2 � 2 � 2 � 8 possible outcomes with three
tosses. With h � heads, and t � tails, these are hhh,
hht, hth, htt, thh, tht, tth, or ttt. The probability of

hhh plus the probability of hht, plus . . . plus the
probability of ttt must total 1, so the probability of
each event must be 1/8 � 0.125 � 0.53.

What is the probability of three heads in Þve tosses
of the coin? There are 25 � 32 possible outcomes
(permutations), but some of these permutations are
identical to others, e.g., hhhtt and hthth. We need to
Þgure out how many unique combinations there are in
these 32 permutations. The simple answer is (proba-
bility of heads)3 � (probability of not heads)2 �
0.03125. There are six possible combinations: hhhhh,
hhhht, hhhtt, hhttt, htttt, and ttttt. Therefore, the total
probability will be 6 � 0.03125 � 0.19. So, the simple
answer is wrong because the total must equal 1. We
will start with a new problem and come back to this
one at the end.

The letters abc can be written abc, bac, bca, cba,
cab, acbÑthere are six ways. Alternatively, if there are
three letters to be placed into three spaces, one could
place the Þrst letter into any space. One would then
put the second letter into any of the remaining two
spaces. 3x2x1 � 3! � 6. In general, for A objects placed
into A spaces there are A! ways to arrange them: or
Ax(A-1)x(A-2)x(A-3)x . . . x(A-(A-1)). But some-
times some of the objects are identical. For example,
how many ways can one arrange the letters in the
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word B1E1D1D2E2D3? If all the letters are in some way
unique there would be 6 � 5 � 4 � 3 � 2 � 1 � 6! �
720 permutations. However, if one D looks like an-
other we need to reduce the number of permutations
by the number that look identical. So, we would get
6!

3! 2!
because there are three Ds and two Es. For any

set of letters the equations would be
L!

L1!L2! . . . Lr!
.

Now, consider a case where one wants three letters
from the list A B C D E. There are Þve choices for the
Þrst letter, four for the second, and three for the third.
However, it does not matter if one gets ABC or ACB
or any of the other similar combinations. Therefore,

there will be
5x4x3

3x2x1
possible groups. In general, with n

items to place into r groups there will be
n�n� 1��n� 2� . . . . �n� r� 1�

r!
outcomes. A short-

hand notation for this is �nr� or n choose r. This is

sometimes phrased as the number of possible combi-
nations of n objects taken r at a time.

To answer the three heads in Þve tosses, we noted
that the simple approach was wrong. However, we can
now include the number of ways of arranging three
heads in Þve tosses of the coin. There is one way of
getting Þve heads and one way of getting no heads.
The probability of each event is 3%. There are Þve
ways of getting four heads and Þve ways of getting only
one head. The probability of each event is 16%. There
are 10 ways of getting three heads or two heads, and
the probability of each is 31%. Summing these prob-
abilities gives 0.03 
 0.03 
 0.16 
 0.16 
 0.31 
 0.31 �
1. One last problem: what is the probability of at least
one head? One could work out all the probabilities,
but there is only one outcome with no heads. The
probability this will occur is 0.03, so the answer must
be 1 � 0.03 � 0.97. In our pooling problem, we can
work with either the number of infected pools or with
the number of healthy pools. A pooled sample will not
be infected only if all individuals within that pool are
not infected.
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